
On the Impact of Execution
Models: A Case Study in
Computational Chemistry

DANIEL CHAVARRÍA-MIRANDA, MAHANTESH HALAPPANAVAR, SRIRAM
KRISHNAMOORTHY, JOSEPH MANZANO, ABHINAV VISHNU, ADOLFY HOISIE

2015 Large-Scale Parallel Processing workshop (LSPP)
29th IEEE International Parallel & Distributed Processing Symposium (IPDPS)

May 18-21, Hyderabad, India
1

!   Future extreme scale computing systems will be significantly power
constrained

!   Current petascale era software & hardware ecosystem:
!   Does it need to evolve?
!   Or be completely replaced?

!   Many of these questions relate to the underlying execution model
!   Execution model:

!   Conceptual framework describing orchestration of computation on parallel
hardware & software resources

!   Connects application & algorithms to the underlying architecture & systems
software

!   How do we keep thousands of compute nodes busy?
!   Load balancing problem
!   Under different execution models

Motivation

2

!   Communicating Sequential Processes (CSP) as defined in Hoare’78 1

!   Core execution model at the heart of MPI-1 two-sided communication
!   Bulk Synchronous Processing (BSP) as defined in Valiant’90 2

!   Core execution model for many PGAS environments
!   MPI-RMA, OpenSHMEM, ComEx, GASNet, Global Arrays, etc.
! MapReduce-like systems

!   Load balancing can be implemented under both CSP & BSP
!   Shared memory execution models:

!   Considered under a single umbrella in this work (Shared Address Space,
SAS)

!   Key feature: direct access to a common data store
!   Study the performance impact of different combinations of execution

models together with load balancing techniques
!   Target: modern multicore clusters

Execution Models

3
1Hoare, C. A. R. (1978). "Communicating sequential processes". Communications of the ACM 21 (8): 666–677
2Leslie G. Valiant, “A Bridging Model for Parallel Computation,” Communications of the ACM, Volume 33 Issue 8, Aug. 1990

!   Case study using the Self-Consistent Field (SCF) method
!   Electronic structure calculation in computational chemistry

!   Several important challenges for execution models:
!   Irregular work distribution
!   Dependent on structural properties of the input
!   Block-sparse data accesses
!   Tradeoffs between locality & load balance

!   Lessons from SCF are broadly applicable
!   Explored elements:

!   Execution models
!   CSP, BSP, Hierarchical CSP & BSP with SAS

!   Load balancing
!   Novel semi-matching formulation
!   Hypergraph partitionining
!   Work stealing

Self-Consistent Field Method (SCF)

4

Outline

5

!   Motivation
☞ Self-Consistent Field method
!   Work Partitioners
!   Execution Model Variants

!   CSP only: MPI
!   BSP only: Global Arrays
!   CSP + SAS, BSP + SAS
!  Work stealing
!  Work stealing + SAS

!   Experimental Results
!   Conclusions

!   Fundamental quantum chemistry calculation
!   Used to build the Hartree-Fock matrix
!   Building block for higher-order methods: Coupled Cluster, Density

Functional Theory
!   Dominant computational kernel in SCF:

!   Two-electron contribution to the Fock matrix
!   Principal data structures: Schwarz, density & Fock matrices

!   2D block distribution amongst processes on a cluster
!   Computationally sparse n4 calculation over n2 data space

!   n is number of basis sets in input
!   Set of n4 tasks over the data space
!   Each task: reads tiles from Schwarz & density matrices, accumulate results

onto tiles of the Fock matrix
!   Most tasks do not contribute significantly to the result
!   < 1% of tasks do contribute, for large inputs

Self-Consistent Field Method (SCF)

6

!   Pure locality-based schedule:

!   Maximizing locality with respect to data tile access produces severe
load imbalance

!   Computational cost of each task varies (roughly proportional to number
of non-zeroes in data tiles)

SCF method (cont.)

7

0"

5000"

10000"

15000"

20000"

25000"

30000"

1" 5" 9" 13" 17" 21" 25" 29" 33" 37" 41" 45" 49" 53" 57" 61"

#"
of
"ta

sk
s"

process"rank"

#"of"tasks"per"GA"process"0"locality"only"

!   Given these challenges from the SCF application
!   Explore best options for mapping it efficiently onto a cluster

!   Deal with load imbalance first
!   Task weights:

!   Each task accesses two distinct data tiles from Schwarz matrix
!   Examine all elements in the Cartesian product of the tiles
!   Weight corresponds to number of non-zeroes in the product

!   Map tasks to processes on the cluster:
!   Such that the sum of the task weights per process is approximately

equal

!   Two static approaches:
! Hypergraph partitioning
!   Weighted semi-matching over bipartite graph

Work Partitioners

8

! PaToH hypergraph formulation:

!   Each task accesses six different tiles (read 4 tiles of Schwarz & density,
write 2 tiles of Fock)
!   However, only four unique sets of coordinates

!   Multi-constraint formulation:
!   Equalize weight and number of tasks per process
!   Larger number of lighter tasks is not equivalent to a few heavy tasks

Hypergraph Partitioning

9

Unique'(le'coordinates'(4'unique'(les'per'task)''
(nets'in'hypergraph)'Tasks'(cells'in'

hypergraph)' Tasks'(cells'in'
hypergraph)'

one'net'per'
unique'(le''

!   Weighted semi-matching formulation:

!   Bi-partite graph with tasks & processes

!   Single-constraint formulation:
!   Equalize sum of task weights per process

Semi-matching Partitioning

10

Process'ranks'

Tasks'

weight'='w0'+'w2' weight'='w4'weight'='w5'weight'='w6'

P3# P2# P1# P0#

t7# t6# t5# t4# t3# t2# t1# t0#

Outline

11

!   Motivation
!   Self-Consistent Field method
!   Work Partitioners
☞ Execution Model Variants

!   CSP only: MPI
!   BSP only: Global Arrays
!   CSP + SAS, BSP + SAS
!  Work stealing
!  Work stealing + SAS

!   Experimental Results
!   Conclusions

!   MPI is the de facto programming model for clusters
!   Core execution model is CSP

!   Basic concept: need a two-sided communication schedule
!   What does each rank need to send and receive?
!   Use static work partitioners and 2D data decomposition to create schedule

!   Computation & communication macro-steps

CSP only: MPI

12

!   Main difference with CSP:
!   One sided communication enables “position-independent” representation of

tasks
!   Can execute on any process since data accesses are specified in absolute/

global terms
!   No need to build communication schedule

!   Key concept to enable work stealing across processes

BSP Only: Global Arrays

13

!   Couple CSP & BSP implementations with SAS execution model
!   As realized in the OpenMP programming model

!   Two-level load balancing:
!   Inter-node using CSP or BSP
!   Intra-node load balancing across threads

!   CSP + SAS
!   Implemented on top of the hypergraph partitioning approach
!   Master thread performs communication
!   All threads access communicated data from shared buffers
!   Synchronization to prepare write-back (Fock) buffer

!   BSP + SAS
!   Communication is done inline by all threads (synchronized by locks)
!   Not much overhead due to large computational load

CSP + SAS, BSP + SAS

14

!   Distributed work stealing across processes on a cluster
!   Dynamic adaptivity in the presence of load imbalance
!   Two variants:

!   Per-core work stealing
!   Work stealing + SAS

!   Both use one-sided communication to access task queues on
remote compute nodes

!   Persistence-based approach:
!   Initial seeding of task queues based on pure locality approach
!   Keep track of which actual tasks were executed by the process to

seed queues for following iterations
!   Work stealing + SAS

!   Steal tasks at a coarser granularity
!   Execute them using OpenMP work sharing constructs

Work Stealing

15

Outline

16

!   Motivation
!   Self-Consistent Field method
!   Work Partitioners
!   Execution Model Variants

!   CSP only: MPI
!   BSP only: Global Arrays
!   CSP + SAS, BSP + SAS
!  Work stealing
!  Work stealing + SAS

☞ Experimental Results
!   Conclusions

!   Ran on up to 2048 cores of PNNL’s Olympus cluster
!   Dual-socket AMD Interlagos processors (16 cores per sockets), 64GB RAM

per node
!   Use every other core for runs due to shared floating point units (Bulldozer)
!   QDR Infiniband interconnect

!   16 processes per node or 16 threads w/single process for OpenMP runs
!   Two input decks:

!   256 atoms of Beryllium (Be), 356 atoms of Be
!   Work stealing granularities:

!   Process-based: 1 task
!   SAS-based: 1024 tasks

!   To reduce steal overhead and keep threads busy

Experimental Results

17

atoms of beryllium (Be), with 3840 and 5280 basis functions
respectively1.

Comparison of Approaches: We measure and compare
the performance of all versions using the total execution time
broken down into three major contributors: the execution
time for ten iterations of the two-electron kernel (represented
by the blue color in the charts), the time to construct
communication schedules (shown in green in the charts);
and the time required to run the work partitioners on the
enumerated tasks (shown as purple).

The experiments are broken down into two major cat-
egories: process-based and multithreaded runs. For process
based runs, the work stealing granularity is very fine grained
(one task). On the other hand, the steal unit for the mul-
tithreaded cases is 1024 tasks, in order to reduce steal
overhead and increase thread utilization in the associated
OpenMP parallel region. We experimented with other gran-
ularities for the steal unit with 1024 being the best. Task
filtering and weighing are parallelized using multithreading
for the appropriate variants.

The performance of different versions is compared across
two major axes: scale in the number of cores used (512,
1024 and 2048), and the different execution models vari-
ants, including BSP and CSP for communication and Work
Stealing (WS), Semi-Matching (SM) and HyperGraph (HG)
partitioning for load balancing. The selected variants are
summarized in Table I.

BSP CSP
Intra-node/Inter-node WS SM HG HG

Process-centric • • • •
OpenMP guided (MT) • • •

Table I: SCF two-electron kernel versions where WS is Work Stealing, SM
is Semi-Matching, and HG is Hypergraph.

Figure 5 and Figure 6 present the execution time break-
down for the two selected problem sizes for the process-
based runs and the multithreaded-based runs, respectively.
Each graph is grouped by execution model variant, with
each group presenting results for 512, 1024 and 2048 cores.
Figures 5a and 5b present the execution breakdown for the
process-based execution variants. Figures 6a and 6b present
the execution breakdown for the multithreaded variants. For
the multithreaded results, the number between parentheses
represents the total number of nodes used in the experiment.

Figure 7 presents a comparison of the execution times
between the process-based and multithreaded work stealing
variants. Table II presents the average enumeration times in
seconds, for the process-based and thread-based variants of
the code across the selected problem sizes and core counts.
The task enumeration process consists of the task filtering
described in Algorithm 1 and the task weighing described

1The number of elements of the Schwarz, density & Fock matrices is
the square of the number of basis functions used

in Algorithm 2. Task enumeration is a pre-processing step
done once, its outcome and results are used to perform load
balancing and schedule task execution under the different
schedulers. Task enumeration is thus non-scalable, however
its cost can be amortized over the execution’s lifetime.
In this case, we executed the two-electron kernel for ten
iterations but a more realistic run would run for hundreds of
iterations further amortizing the cost of the non-scalable task
enumeration step. The difference between the average times
for processes and threads corresponds to the fact that the
process-based versions are partitioning the problem further
than the threaded versions, requiring more communication
to inspect and filter out tasks, the multithreaded versions use
one partition per node with multiple threads cooperatively
enumerating the tasks.

Cores Variant 256 atoms 352 atoms
512 processes 77 274
512 threads 47 162
1024 processes 88 285
1024 threads 71 156
2048 processes 135 328
2048 threads 44 196

Table II: Average task enumeration times (in seconds) for different two-
electron kernel variants

V. ANALYSIS AND INSIGHT

As can be seen from Figure 5, many of the process-based
variants execute with high performance and scale well as
the number of cores increases for the same problem size.
In particular, the statically scheduled versions can match
(and sometimes exceed) the performance of the dynami-
cally scheduled process-based work stealing version (when
only considering the execution time), however they have to
pay a significant cost in terms of pre-processing overhead
(Figures 5a and 5b), which may not be practical in a non-
experimental version of this kernel (Hartree-Fock module in
NWChem). The semi-matching formulation is significantly
faster to execute, but can produce lower quality partitionings
(due to its use of single-constraint partitioning by weight).
The hypergraph method is much slower but produces higher
quality partitions (better load balance) [12]. Further research
into improving the accuracy of static load balancing by
providing more precise modeling of the computational cost
of a task is needed.

A major insight from this work is that system-wide dy-
namic & adaptive computation, which has shown to be
highly advantageous for complex workloads such as this one,
requires the right kind of communication and concurrency
primitives. It is not feasible to deliver adaptive execution
across multiple nodes in the absence of inter-node dynamic
rescheduling and communication.

Strict CSP is limited in its capacity to support adap-
tive execution since it can require building (and possibly

Experimental Results (cont.)

18

0

20

40

60

80

100

120

140

160

51
2

10
24

20
48 51
2

10
24

20
48 51
2

10
24

20
48 51
2

10
24

20
48

BSP+SM BSP+HG CSP+HG BSP+WS

Ti
m

e
 (

s)

Process Execution Breadown: 256 Atoms

SM/HG
Scheduling
Execution

0

50

100

150

200

250

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

BSP+HG+MT CSP+HG+MT BSP+WS+MT

Ti
m

e
 (

s)

MT Execution Breakdown: 256 Atoms

HG
Scheduling
Execution

0

50

100

150

200

250

300

51
2

10
24

20
48 51
2

10
24

20
48 51
2

10
24

20
48 51
2

10
24

20
48

BSP+SM BSP+HG CSP+HG BSP+WS

Ti
m

e
 (

s)

Process Execution Breakdown: 352 Atoms

SM/HG
Scheduling
Execution

0

50

100

150

200

250

300

350

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

51
2

(3
2)

10
24

 (6
4)

20
48

 (1
28

)

BSP+HG+MT CSP+HG+MT BSP+WS+MT

Ti
m

e
 (

s)

MT Execution Breakdown: 352 Atoms

HG
Scheduling
Execution

!   Studied a large number of execution model variants for SCF
benchmark
!   Different communication primitives, task scheduling, concurrency

!   Statically scheduled versions can match and sometimes exceed
work stealing-based version

!   Semi-matching executes fast for a static partitioning
!   Can produce lower quality partitionings

! Hypergraph is better but very slow
!   System wide dynamic adaptation

!   Requires the right kind of communication & concurrency primitives
!   Execution model design choices & assumptions can limit critical

optimizations
!   Such as global, dynamic load balancing

!   Future work: consider other execution & programming models, improve
accuracy of static partitioning formulations

Analysis & Conclusions

19

