
Some Do’s and Don’ts  
for  

Designing Parallel Languages

Laxmikant	
 (Sanjay)	
 Kale	

h3p://charm.cs.illinois.edu	

Our Focus Area: CSE in HPC
•  BigData… lets keep it on the side for this

discussion..
–  It turns out many ideas in CSE/hpc will help the

broadened big-data scenarios as well
•  CSE apps are characterized by:
–  Iterative computations
–  Persistence in behavior

•  Even for dynamically adaptive applications
–  A relatively small repertoire of data structures

•  Structured/unstructured meshes, matrices, particles,
hierarchical trees, ..

hips15 2

State of the field: Applications
•  Strong scaling needs
–  Since early days, until recently, if you get a larger

machine, you increased the resolution
–  Now, increasingly: we need to solve the same

(resolution) problem, but faster
•  Multi-physics applications
•  Multi-module applications
•  Multi-scale applications

hips15 3

State of the field: Architecture
•  Frequency increases stopped in 2003

–  Stabilized around 3GHz
–  Reason: thermal
–  Power dissipation of a chip can’t be much more than

100 W
•  Moore’s law continues:

–  22nm exists, 14nm around the corner
–  Limits is somewhere around 5 nm
–  That’s only 50A

•  Consequence:
–  30-50B transistors per processor chip
–  Many powerful cores
–  Or many many somewhat less powerful cores

hips15 4

Exascale Challenges
•  Main challenge: variability
–  Static/dynamic
–  Heterogeneity: processor types, process

variation, ..
–  Power/Temperature/Energy
–  Component failure

5 hips15

New Languages: acceptance?

•  The old attitude:
disdain
–  For good reason
–  The next 700 languages

•  History:
–  Fortran 1955
–  Algol/Pascal: 1960s
–  C: 1970s
–  C++: 1980s
–  Java: 1990s
–  Interpretive/scripting

languages: Python, TCl/
Tk, Ruby…

–  Newer crop: Go, ..

•  So, its hard to get a
new language accepted

hips15 6

The newfound acceptance of
languages in HPC

•  The challenges headlined by exascale
•  Examples:
–  X10
–  Chapel
–  Legion
–  All the new task models: Parsec, OmpSS,

Openmp task model
•  Within US DoE:
–  serious evaluation of new programming models

hips15 7

Outline of the talk
•  So, you want to design a new language
•  Here is some advice from a old hand
•  I will outline a few do’s and don’ts
•  To begin with: some design principles:

hips15 8

hips15 9

Aim NOT for full automation, 	

But for a good division of labor 	

between the programmer and the system	

Example of Full automation
•  Parallelizing compiler?
–  Full automation? Not really: only if you start from

a sequential program
–  But still, why not?
–  After 45 years of research

•  Some very good intellectual successes
•  But not enough

hips15 10

hips15 11

Avoid Pie in the Sky approaches,	

Bottom up development of abstractions	

Corollary: Adaptive Runtime
•  Build on top an Adaptive Runtime System
•  Programmers can decide what to do in

parallel relatively easily
•  But resource management?
–  i.e. which processor does what and when,
–  Which processor has which data
–  Is tedious and automatable

•  Today I see no reason to decide develop a
higher level language without using a RTS
–  And frankly, nothing better than my group’s

Charm++ J

hips15 12

Adaptive Runtime Systems
•  What is an Adaptive Runtime System?
–  It observes what is going on in a parallel

computation on a given machine
•  feedback from the machine and the application

–  And then
–  Takes actions to control the system, so its

executing more efficiently
•  How to empower an Adaptive Runtime

System?

hips15 13

hips15 14

Source: Wikipedia

Governors
•  Around 1788 AD, James Watt and

Mathew Boulton solved a problem
with their steam engine
–  They added a cruise control… well,

RPM control
–  How to make the motor spin at the

same constant speed
–  If it spins faster, the large masses

move outwards
–  This moves a throttle valve so less

steam is allowed in to push the prime
mover

hips15 15

Source: wikipedia

Control theory, Maxwell, ..
•  You let the system “misbehave”, and use that

misbehavior to correct it..
•  The control theory was concerned with

stability, and related issues
–  Fixed delay makes for highly analyzable system

with good math demonstration
•  We will just take two related notions:
–  Controllability
–  Observability

•  And stretch them a bit for our purposes

hips15 16

A modified system diagram

hips15 17

System

controller

Output variables

Observable/
Actionable
variables Control

variables

some of these are
Metrics

that we care about

These include one or more:
•  Objective functions (minimize, maximize, optimize)
•  Constraints: “must be less than”, ..

hips15 18

Archimedes is supposed to have said, of the lever:
Give me a place to stand on,

and I will move the Earth

Source: Wikipedia

Where do you get controllable and observables in
parallel computations?

O	

M

19

My Mantra for empowering RTS

hips15

My Mantra a	

O	

M

hips15 20

O	

My Mantra

M a	

Oh….Maybe the

order doesn’t matter

21 hips15

O	

My Mantra

Ma	

verdecomposition
synchrony
igratability

22 hips15

Overdecomposition
•  Decompose the work units & data units into

many more pieces than execution units
–  Cores/Nodes/..

•  Not so hard: we do decomposition anyway

23 hips15

Migratability
•  Allow these work and data units to be

migratable at runtime
–  i.e. the programmer or runtime, can move them

•  Consequences for the app-developer
–  Communication must now be addressed to

logical units with global names, not to physical
processors

–  But this is a good thing
•  Consequences for RTS
–  Must keep track of where each unit is
–  Naming and location management

24 hips15

Asynchrony:  
Message-Driven Execution

•  Now:
–  You have multiple units on each processor
–  They address each other via logical names

•  Need for scheduling:
–  What sequence should the work units execute in?
–  One answer: let the programmer sequence them

•  Seen in current codes, e.g. some AMR frameworks
–  Message-driven execution:

•  Let the work-unit that happens to have data (“message”)
available for it execute next

•  Let the RTS select among ready work units
•  Programmer should not specify what executes next, but can

influence it via priorities

25 hips15

Charm++
•  Objects, called chares:
–  Organized into multiple collections, each with its

own indexing
–  Asynchronous method invocations

•  User-level “run” threads embedded in chares
•  Asynchronous (non-blocking) reductions
•  “structured dagger”:
–  script-like notation to express dependencies

among computations and messages within chares

26 hips15

Message-driven Execution

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

27 hips15

Empowering the RTS

•  The Adaptive RTS can:
–  Dynamically balance loads
–  Optimize communication:

•  Spread over time, async collectives
–  Automatic latency tolerance
–  Prefetch data with almost perfect predictability

Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity

28 hips15

So, specific prescription
•  Build you HLL on top of an adaptive runtime

system based on overdecomposition,
asynchrony and migratability

•  Currently, that is just Charm++
•  New systems are being designed
–  OCR, etc.
–  But will be very similar, in my opinion, to Charm

++ RTS
–  (not necessarily Charm++ “language”)

hips15 29

hips15 30

Develop parallel Languages via	

Application –Oriented but Computer Science

centered research	

Computer Scientists’ role in HPC
•  We computer scientists tend to be “platonic”

–  Pursue an idea just because its “beautiful”
–  Ignoring needs of practical science/engineering applications

•  Alternatively:
–  Worked on a single application … essentially as

programmers!
–  But that doesn’t lead to broad enabling technology

•  What is needed:
–  Application oriented, yet computer science centered research
–  Work on multiple applications,
–  Develop abstractions triggered by needs of one, but in a way

that’s useful for many
–  Accrete abstractions in practical parallel software systems

hips15 31

hips15 32

hips15 33

hips15 34

35

So, Prescription:
•  Design abstractions based solidly on use-cases
–  Application-oriented yet computer-science centered

approach
•  Motivate language design by multiple

application use-cases
•  Test and hone them in the context of multiple

full-fledged applications
•  Anecdote about an HLL designer

5/26/15 35 hips15

Charm++ and CSE Applications

hips15 36

Enabling	
 CS	
 technology	
 of	
 parallel	
 objects	
 and	
 intelligent	
 runCme	

systems	
 has	
 led	
 to	
 several	
 CSE	
 collaboraCve	
 applicaCons	

Synergy	

Well-­‐known	
 Biophysics	

molecular	
 simulaCons	
 App	
 	

Gordon	
 Bell	
 Award,	
 2002	

ComputaConal	

Astronomy	

Nano-­‐Materials..	

EpiSimdemics

Stochastic
Optimization

Next, Syntax
•  Is syntax (and syntactic sugar) important?
•  Yes, but..
•  Alan Perlis: Too much syntactic sugar gives

you cancer of the semicolon
–  (This from a Lisp proponent! Proliferator of

parenthesis)
•  Syntax prescriptions:
–  No gratuitous syntax invention
–  For well-established concepts, stick to norms
–  Add it where it provides true convenience, avoids

boilerplate, or clarifies meaning

hips15 37

Compiler Support
•  Compiler supported language vs a library-

like “language”
•  Tradeoff:
–  Compilation and static analysis facilitates a lot

more optimization, and boilerplate ellimination
–  But you have to buy into a flexible compiler

infrastructure
–  (as an aside: you want to stay away form taking

responsibility for back-end optimization code
generation)

hips15 38

AMPI: Adaptive MPI
•  Each MPI process is implemented as a user-level

thread
•  Threads are light-weight and migratable!

–  <1 microsecond context switch time, potentially >100k threads per core
•  Each thread is embedded in a Charm++ object (chare)

hips15

Real Processors

MPI
processes

Virtual
Processors
(user-level
migratable
threads)

39

A quick Example:  
Weather Forecasting in BRAMS

•  Brams: Brazillian weather code (based on RAMS)
•  AMPI version (Eduardo Rodrigues, with Mendes

and J. Panetta)

hips15 40

hips15 41

hips15 42

Baseline: 64 objects on 64 processors

hips15 43

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap

hips15 44

With Load Balancing:
1024 objects on 64 processors

No overdecomp (64 threads) 4988 sec
Overdecomp into 1024 threads 3713 sec
Load balancing (1024 threads) 3367 sec

Next step: world dominion!
•  The world uses MPI
•  AMPI provides amazing runtime-adaptivity

to MPI programs
•  What could go wrong?

hips15 45

AMPI story
•  Well, there is a little step of “converting” MPI

programs to AMPI
–  Mostly, just make it “thread-safe” by encapsulating

global variable accesses
–  And a couple more small changes for facilitating load

balancing
–  For most mid-size applications, this took an afternoon

or maybe a week
–  Seemed like a worthwhile investment

•  A little bit of compiler support can do this easily
•  But: you need a full C/C++/Fortran compiler

infrastructure to do it

hips15 46

Compiler support issues
•  Compiler researchers;
–  Our language support needs are too simple for

them
–  After all, they can deal with high-brow

polyhedral stuff
–  Besides they thrive on demonstrations, rather

than working systems
•  Build your own infrastructure?
•  Simplify language (give up on C/C++)?

hips15 47

Language acceptance
•  An important lesson (following up from AMPI)

–  Small annoyances are big problems, if they come in
the way of good initial experience

•  Another Example:
–  Charm++ : mostly C++ programming, but requires

an interface file describing method signatures
–  Parsing of this file is done by a simple translator
–  Not very robust, but not a problem for experienced

programmers
•  As in: after your second or 3rd program, you know what

works, what are the workarounds, etc.
–  But it can be a big issue for someone evaluating it

afresh, and working without the benefit of experience
users around them!

hips15 48

Interoperability
•  You want modules written in your new

languages to work well with modules
written in existing dominant “languages”
–  E.g. MPI

•  Also, interoperate with other new languages
–  Including your own other languages!
–  Because once you get the hang of it, you will be

addicted designing new languages
•  Just joking

–  But we will see justification for existence and co-
existence of multiple languages

hips15 49

Interoperability
•  Has multiple dimensions
•  Don’t “own” the “main” and initialization
–  Every language will want to do that, and that

impossible
•  Don’t conflict on name-spaces
•  Cannot have conflicting runtimes

hips15 50

Compositionality
•  It is important to support parallel composition

–  For multi-module, multi-physics, multi-paradigm
applications…

•  What I mean by parallel composition
–  B || C where B, C are independently developed modules
–  B is parallel module by itself, and so is C
–  Programmers who wrote B were unaware of C
–  No dependency between B and C

•  This is not supported well by MPI
–  Developers support it by breaking abstraction

boundaries
•  E.g., wildcard recvs in module A to process messages for

module B
–  Nor by OpenMP implementations:

hips15 51

hips15 52

Without message-driven execution
(and virtualization), you get either:
Space-division

Time

B

C

hips15 53

OR: Sequentialization

Time

B

C

hips15 54

Parallel Composition: A1; (B || C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

Interoperability
•  Between languages with message-driven

and programmer driven scheduling
–  Example: MPI and Charm++

•  Essentially requires “exposing” the message
driven scheduler in a library interface

hips15 55

Interoperation of Parallel Languages
•  Implement a library in

the language that suits
it the most, and use
them together!

•  MPI + UPC, MPI +
OpenMP + Charm++

hips15 56

Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

int main(int argc, char **argv) {
 // Initialization
 mpi_module1(data);
}

mpi_module1(data) {
 // do work
 charm_module1(data);
}

charm_module1(data) {
 // do work
}

charm_module2(data) {
 // do work
 mpi_module2(data);
}

EXIT

1

2 3

4

5

mpi_module2(data) { }

Is Interoperation Feasible in
Production Applications?

Application Library Productivity Performance

CHARM in MPI
(on Chombo)

HistSort in
Charm++

195 lines
removed

48x speed
up in Sorting

EpiSimdemics MPI IO Write to single
file

256x faster
input

NAMD FFTW 280 lines less Similar
performance

Charm++’s
Load Balancing

ParMETIS Parallel graph
partitioning

Faster
applications

hips15 57

High Level Programming Systems
•  Different ways of attaining “higher level”

–  Global view of data
–  Global view of control
–  Both
–  Simplified or specialized syntax
–  Safety properties

•  But the largest benefits come from specialization
–  Domain specific languages
–  Domain specific Frameworks
–  Interaction-pattern specific languages

hips15 58

Task-based languages
•  Just an aside:
•  Tasks used to mean “agenda” parallelism
–  Create (fire) a fully described task
–  Once created, it can run on any processor/node

and has no dependences
•  New definition:
–  Tasks are nodes of a computation DAG
–  They have dependences that are visible to the

RTS
–  Typically run on the same node that created it

hips15 59

Moving Computation to Data
•  I came across this phrase in Ann Roger’s work
•  It’s a nice catchy phrase
•  But really:

–  Computation is when data meets data to create data
destined for other computations

–  Macro-data flow view
–  Its always data moving to data

•  There is a sense in which one of the “data” is
computation:
–  If it is a user-level thread, with its own stack, for

example (or a continuation)

hips15 60

MSA: Multiphase Shared Arrays
•  In the simple model:
•  A program consists of

–  A collection of Charm
threads, and

–  Multiple collections of
data-arrays
•  Partitioned into pages

(user-specified)
•  Each array is in one

mode at a time
–  But its mode may change

from phase to phase
•  Modes

–  Write-once
–  Read-only
–  Accumulate
–  Owner-computes

hips15 61

A
B

C C C C

Observations:
General shared address space
abstraction is complex
Certain special cases are simple,
and cover most uses

hips15

Charisma: Static Data Flow
Observation: many CSE applications or
modules involve static data flow in a
fixed network of entities

The amount of data may vary from
iteration to iteration, but who talks to
whom remains unchanged

62

l  Arrays of objects

l  Global parameter space

-  Objects read from and write
into it

l  Clean division between

-  Parallel (orchestration) code

-  Sequential methods

hips15

Charisma++ example (Simple)

while (e > threshold)
 forall i in J
 <+e, lb[i], rb[i]> := J[i].compute(rb[i-1],lb[i+1]);

63

DivCon-DA
•  Work in Pritish Jetley’s PhD thesis
•  DivCon: divide-and-conquer
•  The twist: parallel arrays
•  E.g. express quicksort using Divcon

–  Normal implementation will be swamped by data
movement costs..

–  Permutation in every one of log P phases
•  DivCon-DA supports distributed arrays

–  So, partitioning can happen in place, without data
movement

–  Data movement becomes the prerogative of the RTS

hips15 64

DisTree
•  Distributed Trees
•  More of a DSL (Domain Specific language)
•  Can be used to express
–  Barnes-Hut
–  Fast-Multipole
–  Smooth Particle Hydrodynamics
–  Graphics algorithms involving data stored in

trees
–  …

hips15 65

A View of an Interoperable Future

hips15 66

X10

Prescriptions for language design
•  Aim at a good division of labor (sys/pgmr)
•  Bottom up development of abstractions
•  Use an overdecomposition based adaptive

runtime system (and decompose accordingly)
•  Application-oriented development
•  Compiler support: important but tough
•  Don’t underestimate the “small” hurdles to

acceptance
•  Interoperate
•  Specialization is a key to higher productivity
•  We are heading towards an ecosystem of

parallel languages

hips15 67

More info on Charm++:
http://charm.cs.illinois.edu

I am looking for a postdoc
and/or a research programmer

