Some Do’s and Don’ts
for
Designing Parallel Languages

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu

= PARALLEL (D
}NIVEESJIW£:JILLI}OIS ﬁRBAEA)-CHA{IPAIGSN PROGRAMMING LAB m

Our Focus Area: CSE in HPC

« BigData... lets keep it on the side for this
discussion..
— It turns out many ideas in CSE/hpc will help the
broadened big-data scenarios as well
« CSE apps are characterized by:
— Iterative computations

— Persistence in behavior
« Even for dynamically adaptive applications

— A relatively small repertoire of data structures

« Structured/unstructured meshes, matrices, particles,
hierarchical trees, ..

PPL

UIUC

State of the field: Applications

Strong scaling needs

— Since early days, until recently, if you get a larger
machine, you increased the resolution

— Now, increasingly: we need to solve the same
(resolution) problem, but faster

Mu
Mu
Mu

ti-physics a
ti—-module a
ti-scale app

oplications
oplications

ications

PPL

3 UIUC

State of the field: Architecture

 Frequency increases stopped in 2003
— Stabilized around 3GHz
— Reason: thermal
— Power dissipation of a chip can’t be much more than
100 W
« Moore’s law continues:
— 22nm exists, 14nm around the corner
— Limits is somewhere around 5 nm
— That’s only 50A
 Consequence:
— 30-50B transistors per processor chip

— Many powerful cores
— Or many many somewhat less powerful cores

PPL

UIUC

Exascale Challenges

* Main challenge: variability
— Static/dynamic

— Heterogeneity: processor types, process
variation, ..

— Power/Temperature/Energy
— Component failure

PPL

UIUC

New Languages: acceptance?

 The old attitude: « So, its hard to get a
disdain new language accepted
— For good reason
— The next 700 languages
« History:
— Fortran 1955
— Algol/Pascal: 1960s
— C:1970s
— C++: 1980s
— Java: 1990s

— Interpretive/scripting
languages: Python, TCl/
Tk, Ruby...

— Newer crop: Go, ..

T PPL
6 UIUC

The newfound acceptance of
languages in HPC

 The challenges headlined by exascale

 Examples:
- X10
— Chapel
— Legion
— All the new task models: Parsec, OmpSS,
Openmp task model

 Within US DotE:

— serious evaluation of new programming models

PPL

UIUC

Outline of the talk

So, you want to design a new language
Here is some advice from a old hand

| will outline a few do’s and don’ts
 To begin with: some design principles:

T PPL
8 UIUC

Aim NOT for ([automation,
But for a goo division @C [abor

661”\/\/8611 tﬁejorogmmmer 01110{ tﬁe SySI?m

Example of Full automation

« Parallelizing compiler?
— Full automation? Not really: only if you start from
a sequential program
— But still, why not?

— After 45 years of research

« Some very good intellectual successes
« But not enough

T PPL
10 UIUC

Avoid Pie in the S ﬁy ap roaches,
Bottom up o[eve[qpment 0 abstractions

Corollary: Adaptive Runtime

Build on top an Adaptive Runtime System

Programmers can decide what to do in
parallel relatively easily

But resource management?

— i.e. which processor does what and when,
— Which processor has which data

— Is tedious and automatable

Today | see no reason to decide develop a
higher level language without using a RTS

— And frankly, nothing better than my group’s
Charm++ ©

12

PPL

UIUC

Adaptive Runtime Systems

« What is an Adaptive Runtime System?

— It observes what is going on in a parallel
computation on a given machine
« feedback from the machine and the application

— And then

— Takes actions to control the system, so its
executing more efficiently

« How to empower an Adaptive Runtime
System?

13

PPL

UIUC

FI1G. 4.--Governor and Throttle-Valve.

Source: Wikipedia

14

Governors

« Around 1788 AD, James Watt and
Mathew Boulton solved a problem
with their steam engine

— They added a cruise control... well,
RPM control 2 I
— How to make the motor spin at the [EEEEEESER

Y ;

same constant speed e e
— If it spins faster, the large masses >
move outwards

— This moves a throttle valve so less
steam is allowed in to push the prime
mover

2

L3 UIUC

Control theory, Maxwell, ..

You let the system “misbehave”, and use that
misbehavior to correct it..

The control theory was concerned with
stability, and related issues

— Fixed delay makes for highly analyzable system
with good math demonstration

We will just take two related notions:
— Controllability
— Observability

And stretch them a bit for our purposes

16

PPL

UIUC

A modified system diagram

_ some of these are
Output variables

System Metrics
that we care about
Observable/
Actionable
Control variables
variables i,
controller

These include one or more:
* Objective functions (minimize, maximize, optimize)
e (Constraints: “must be less than”, ..

. | = UIUC

Archimedes is supposed to have said, of the lever:
Give me a place to stand on,
and | will move the Earth

Where do you get controllable and observables in
parallel computations?

18

PPL

UIUC

My Mantra for empowering RTS

OM

PPL

L UIUC

My Mantra

OM

T PPL
20 UIUC

My Mantra

Oh....Maybe the
order doesn’t matter

OMa

T PPL
21 UIUC

My Mantra

Ner@mosiﬁon
5yncﬁrony

igmmﬁi[ﬁy

Overdecomposition

« Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
« Not so hard: we do decomposition anyway

PPL

23 UIUC

Migratability

* Allow these work and data units to be
migratable at runtime

— i.e. the programmer or runtime, can move them

« Consequences for the app-developer

— Communication must now be addressed to
logical units with global names, not to physical
Processors

— But this is a good thing

« Consequences for RTS

— Must keep track of where each unit is
— Naming and location management

PPL

e UIUC

Asynchrony:

Message-Driven Execution
« Now:

— You have multiple units on each processor
— They address each other via logical names

« Need for scheduling:
— What sequence should the work units execute in?

— One answer: let the programmer sequence them
« Seen in current codes, e.g. some AMR frameworks
— Message-driven execution:

« Let the work-unit that happens to have data (“message”)
available for it execute next

» Let the RTS select among ready work units

* Programmer should not specify what executes next, but can
influence it via priorities

T PPL

UIUC

Charm++

« Objects, called chares:

— Organized into multiple collections, each with its
own indexing

— Asynchronous method invocations
User-level “run” threads embedded in chares
Asynchronous (non-blocking) reductions

“structured dagger’:

— script-like notation to express dependencies
among computations and messages within chares

T PPL
26 UIUC

Message-driven Execution
H
9 o

8 g, T e
® - o _o -

Processor | Frocessor 2
Message Queue Message Queue
— —

T PPL
2 UIUC

Empowering the RTS

{ Adaptive J

Adaptivity

Runtime System

Asynchrony Overdecomposition Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives

— Automatic latency tolerance

“ UIUC

j[— Prefetch data with almost perfect predictability PPL

So, specific prescription

* Build you HLL on top of an adaptive runtime
system based on overdecomposition,
asynchrony and migratability

« Currently, that is just Charm++

 New systems are being designed

— OCR, etc.

— But will be very similar, in my opinion, to Charm
++ RTS

— (not necessarily Charm++ “language”)

I .

PPL

UIUC

ﬁeve@a Joam[fe[Languages via
ézljojofication ~Oriented but Comjauwr Science
centered research

Computer Scientists’ role in HPC

« We computer scientists tend to be “platonic”
— Pursue an idea just because its “beautiful”
— Ignoring needs of practical science/engineering applications

« Alternatively:

— Worked on a single application ... essentially as
programmers!

— But that doesn’t lead to broad enabling technology

 What is needed:
— Application oriented, yet computer science centered research
— Work on multiple applications,

— Develop abstractions triggered by needs of one, but in a way
that’s useful for many

— Accrete abstractions in practical parallel software systems

T PPL
31 UIUC

Developing a Computer Science
Agenda for
High-Performance Computing

Suppose that you are in charge of a
budget of 5 billion dollars over the next ten
years for advancing high-performance
computing: What would be your technical
agenda for making the greatest impact?

In this volume, representatives of the

U.S. Computer Science and Engineering
academia and industry address this question.

RESS

PRES:

Editor: Uzi Vishkin

PPL

UIUC

CENTERED HPCC RESEARCH

Laxmikant V. Kalé
Department of Computer Science
University of Illinois
Urbana, IL 61801
E-mail: kale@cs.uiuc.edu

compuling £alf, I preporolion (o defining on cgenda for
HPCC, théa paper fir& omolyzea the recaoma for théa back-
loak, AXkough besel with wmreolistic ezpeclalionas poroliad
proceasing will be o bemeficial tachmology wihk o broad @m-
poct, beyond applicaiors in aciernce, Hosever this will re-
guire aignificant advarces and work in compuler acienoe in
eddition (o perallel bardware ond end-opplicalions whick are
enmphosized currently, The paper presenls o poasible agenda
that codd b d o 0 ascoranful HPCC program in the fulwre,

1 Introduction

It & cenr that wmid the excdement wbhod the emergog
bigh perfrmance compuliog techndogy, » backdnd of mrtx
™ developmg, Thin backbub i nguimt the HPCC progoess
wnwell nxtheiden of msivedy puonlie] ompting X wlf, Ken
Kenedy, n lmdng remnrcher = puralld computimg, wrote
nn nticle recently, tRled “Hgh Performuece Compuling in
Troubhlk™ [6] = which he niluded to the fondimg Eficullion
of the HPCC progmms the skepticien niout ugonds = the
Semnte nnd Congron, e criical nad segalive report by the
Congremionnd Budget Office, de, An ntice by Frad We-
prten [B] dscossen thin report nx well mu the repost by GAO
on ARPA's management of the HPC archRedure rowarch,
Al of thew indicale the badkdwd: sguest the HPCC pro-
g, The backbuod: sguicsd pronlld computimg 2 wdf comen
= pat fom wwerw who Bave tried o wxe thewe computers
nnd fnd that the colmunlly Emprovimg wsmiprocenor work-
Walonngive them nbetler retum on ther invedment ut the
moment,

*The nuthor's raenrch was supported in part by the Natioral
Iratitute of Heakbh PHF .2 P41 AR 05696900 snd Natioral Sa
ence Foundation grnts ASC.1mi693, CCR.9:06608, snd CCH.
9007195,

wwre, Sedon 2 -ad-:! of than ;np- duborale our view om
thin, Next n powstle ngencda for the HPCC progrws w de-
weribed = Sediom 4, The woggeded ngendn x divided = two
prtie drntagic nad techmiond,

The strlege ngende waggesds:

1, The HPCC commurnily, mdudng veudary =ud projed
reclialic expecloiona of the bemefitu thin excling ned
import net techmology,

2, The HPCC programm carrently emphwaxon development
wd deploymest of mwedvdy pruonlle]l =achimen on ome
band and specmixed encd-umer apphcalonk on the
otber, If the HPCC progms & lo emmble the ndop-
tion of the purlild techmology merom k brond mage of
mpplantoes, wad thus belp the nntonnl economy ned
cmpdilivesom, X innecanesy to apually emphosize the
middle logerathal mdud ch om 1 , tooks,

L 4

evronmest n agordbhos wed Beasies,

3, The puonlie] muchimen provide n potestid for bgh pe
formumee, bat % remaies Eficddl to redioe thin potes
tad for mwide vusiely of nppBcntiony, Axthe primciples
= hamessg thn lecknobgy are bdler wndendood,
they muu be tuoghl vim n Lromg educolional miliclive
to the next gmealion of remorcdemn wed developern
who = develop slerdncpinnry wils,

The technicn]l ngende presesin our view of whal resensch
drectnnn ould be purwsed to effectively bumew the power
of purulled computers, Thedmeclines mdude efidet porin-
bility, mewage drives execdion (ax dadizct from “mes
wmge pusing”) specic puralld progmmming aiutoctons
ned commtrudy, ed mtediget peformanoe wanlpas, Thix
ngende snderwores . meln-pomt: AR bough | am convimced
of the wladSity nad wgnific of thix nppronch it in densly

P

ol n mumdrows appronch, Ax the puodiel techmology in
@Ete mmmnture, mnd bannot bees explored for mmmy dween
of pot entad applcatioes yd | 2 i impord st thal we nvoid
danderdximg and commiling too ewly, A diverwe wd of
nppronchen seed Lo be mapported al thin suge nx lomg ax
they suy redevnst Lo npplicatons,

APPLICATION ORIENTED AND COMPUTER SCIENCE

B

PPL

UIUC

What role should computer science and computer scien-
tists play in the HPCC program?

When I asked this question to an eminent physical scien-
tist recently, he told me that he takes a dim view of the role
of computer scientists. The computer scientists have their
own agenda, he said, and they tend to take off on work tan-
gential to the development of application programs. [believe
we computer sclentists should have our agendas, because we
would like the principles and techniques we develop to be
applicable to a broad variety of applications, rather than
only the one at hand. However, we need to stay application
oriented, to avold the danger of developing techniques that
are irrelevant to any significant class of applications.

34

PPL

UIUC

So, Prescription:

Design abstractions based solidly on use-cases

— Application-oriented yet computer-science centered
approach

Motivate language design by multiple
application use-cases

Test and hone them in the context of multiple
full-fledged applications

Anecdote about an HLL designer

PPL

35 UIUC

Charm++ and CSE Applications

Well-known Biophysics
molecular simulations App

Nano-Materlals Gordon Bell Award, 2002

*“i ‘f '

Op enAtom Synergy
‘l‘il* T |
Enabllng CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

\

ChaNGa | EpiSimdemics

Computational épace-Tlme Simu atl?“

Astronomy Meshing J Stochastic

Optimization

| = | SCI| U110 C

Next, Syntax

 |s syntax (and syntactic sugar) important?

* Yes, but..
« Alan Perlis: Too much syntactic sugar gives
you cancer of the semicolon
— (This from a Lisp proponent! Proliferator of
parenthesis)

* Syntax prescriptions:
— No gratuitous syntax invention
— For well-established concepts, stick to norms

— Add it where it provides true convenience, avoids
boilerplate, or clarifies meaning

PPL

</ UIUC

Compiler Support

« Compiler supported language vs a library-
like “language”

e Tradeoff:

— Compilation and static analysis facilitates a lot
more optimization, and boilerplate ellimination

— But you have to buy into a flexible compiler
infrastructure

— (as an aside: you want to stay away form taking
responsibility for back-end optimization code
generation)

38

PPL

UIUC

AMPI. Adaptive MPI

« Each MPI process is implemented as a user-level
thread
 Threads are light-weight and migratable!

— <1 microsecond context switch time, potentially >100k threads per core
« Each thread is embedded in a Charm++ object (chare)

MPI
processes

Virtual
Processors
(user-level
migratable

J threads)

PPL

S| U1U

A quick Example:
Weather Forecasting in BRAMS

 Brams: Brazillian weather code (based on RAMS)

« AMPI version (Eduardo Rodrigues, with Mendes
and J. Panetta)

o B -
[

il UIUC

w
~
@

o
(2]

.
4
N
=
&

oo =
=~
> [+
= e R o
= r [
m [=
o
¥
[
Bl

©

w

- = ro o [IS o
~ > © = ES)

-
.
-

BraDS: OOLA/IGES 2010-02-18-0%:46 BraDS: OOLA/IGES 2010-02-18-10:00

PPL

<l UIUC

Baseline: 64 objects on 64 processors
100

Usage Percent %
u

PPL

= UIUC

Over-decomposition: 1024 objects on 64 processors:

Benefits from communication/computation overlap
100

Usage Percent %
%)l

’PL

e UIUC

With Load Balancing:

1024 objects on 64 processors
100

85
a0
75
70
65
60
55

No overdecomp (64 threads) 4988 sec
40 Overdecomp into 1024 threads 3713 sec
30 Load balancing (1024 threads) 3367 sec

Usage Percent %
%y

PPL

= UIUC

Next step: world dominion!

e The world uses MPI

« AMPI provides amazing runtime-adaptivity
to MPI programs

 What could go wrong?

T PPL
45 UIUC

AMPI story

« Well, there is a little step of “converting” MPI
programs to AMPI

— Mostly, just make it “thread-safe” by encapsulating
global variable accesses

— And a couple more small changes for facilitating load
balancing

— For most mid-size applications, this took an afternoon
or maybe a week

— Seemed like a worthwhile investment
« A little bit of compiler support can do this easily

« But: you need a full C/C++/Fortran compiler
infrastructure to do it

T PPL
46 UIUC

Compiler support issues

« Compiler researchers;

— Our language support needs are too simple for
them

— After all, they can deal with high-brow
polyhedral stuff

— Besides they thrive on demonstrations, rather
than working systems

« Build your own infrastructure?
« Simplify language (give up on C/C++)?

I .

PPL

UIUC

Language acceptance

« An important lesson (following up from AMPI)

— Small annoyances are big problems, if they come in
the way of good initial experience

« Another Example:

— Charm++ : mostly C++ programming, but requires
an interface file describing method signatures

— Parsing of this file is done by a simple translator

— Not very robust, but not a problem for experienced
programmers

« As in: after your second or 37 program, you know what
works, what are the workarounds, etc.

— But it can be a big issue for someone evaluating it
afresh, and working without the benefit of experience
users around them!

T PPL

UIUC

Interoperability

 You want modules written in your new
languages to work well with modules
written in existing dominant “languages”
— E.g. MPI

« Also, interoperate with other new languages
— Including your own other languages!

— Because once you get the hang of it, you will be
addicted designing new languages
 Just joking
— But we will see justification for existence and co-
existence of multiple languages

T PPL
49 UIUC

Interoperability

Has multiple dimensions

Don’t “own” the “main” and initialization

— Every language will want to do that, and that
impossible

Don’t conflict on name-spaces
Cannot have conflicting runtimes

50

PPL

UIUC

Compositionality

« It is important to support parallel composition

— For multi-module, multi-physics, multi-paradigm
applications...

 What | mean by parallel composition
— B || C where B, C are independently developed modules
— B is parallel module by itself, and so is C
— Programmers who wrote B were unaware of C
— No dependency between B and C

« This is not supported well by MPI
— Developers support it by breaking abstraction
boundaries

« E.g., wildcard recvs in module A to process messages for
module B

][— Nor by OpenMP implementations: PPL

oL UIUC

Without message-driven execution
(and virtualization), you get either:

Space-division

Time

OR: Sequentialization

Time

. | = UIUC

Parallel Composition: AT1; (B || C); A2

D

Recall: Different modules, written in different
languages/paradigms, can overlap in time

and on processors, without programmer
having to worry about this explicitly

Interoperability

« Between languages with message-driven
and programmer driven scheduling

— Example: MPI and Charm++

« Essentially requires “exposing” the message
driven scheduler in a library interface

I .

PPL

UIUC

Interoperation of Parallel Languages

-— e e e e e e e e e -

» Implement a library in |7paniese i

| mpi_module1(data); | (- ————==-

the language that suits o __ _ _____J (Grmeeicaat |
- () T |
it the most, and use e e @@

| // do work
t h e m to g et h e r I :}charm_module1 (data); : ;;h;mtm_oduleE(dZtaT{—

|
__________ J / do work |
mpi_module2(data); I

« MPI + UPC, MPI + g mediezdad 0 - C T (ay 0l)
OpenMP + Charm++ ®Y

(a) Time Division (b) Space Division (c) Hybrid
P(1)]] - J 1] |]]
P(2)]] 1 1] |]]
P(n-1) []]]]
P(n)]]]] >
Language1 Language 2 Time

Is Interoperation Feasible in
Production Applications?

Application Library Productivity = Performance
CHARM in MPI HistSort in 195 lines 48x speed
(on Chombo) Charm++ removed up in Sorting
EpiSimdemics MPI IO Write to single 256x faster
file input
NAMD FFTW 280 lines less Similar
performance

Charm++’s ParMETIS Parallel graph Faster
Load Balancing partitioning applications

T PPL
57 UIUC

High Level Programming Systems

« Different ways of attaining “higher level”
— Global view of data
— Global view of control
— Both
— Simplified or specialized syntax
— Safety properties

« But the largest benefits come from specialization
— Domain specific languages
— Domain specific Frameworks
— Interaction-pattern specific languages

T PPL
58 UIUC

Task-based languages

e Just an aside:

« Tasks used to mean “agenda” parallelism
— Create (fire) a fully described task

— Once created, it can run on any processor/node
and has no dependences

 New definition:

— Tasks are nodes of a computation DAG

— They have dependences that are visible to the
RTS

— Typically run on the same node that created it

55

PPL

UIUC

Moving Computation to Data

| came across this phrase in Ann Roger’s work
It’s a nice catchy phrase

But really:

— Computation is when data meets data to create data
destined for other computations

— Macro-data flow view
— Its always data moving to data

There is a sense in which one of the “data” is
computation:

— If it is a user-level thread, with its own stack, for
example (or a continuation)

60

PPL

UIUC

MSA: Multiphase Shared Arrays

Observations: * |n the simple model:

General shared address space . A program consists of

abstraction is complex — A collection of Charm
Certain special cases are simple, threads. and

and cover most uses . .
— Multiple collections of
data-arrays

« Partitioned into pages
(user-specified)

Each array is in one
mode at a time

— But its mode may change
from phase to phase

Modes

— Write-once

— Read-only

— Accumulate

A — Owner-computes

Dp
][o [FPPy

-UI0C:

Charisma: Static Data Flow

Observation: many CSE applications or
modules involve static data flow in a
fixed network of entities

The amount of data may vary from
iteration to iteration, but who talks to
whom remains unchanged

N N4 ~o ~
N ~o -
N X \ /\(\
X /"\\ \ Transpose e
- N e .
- NN - -
oogo4 N 7~ s
0000, N ‘ e
0ooo0™~ 3 _ " Multicast
~ 1.

Patch Integration

« Arrays of objects

 Global parameter space T EWNrrYY
- Objects read from and write rlticas S point to Poin

. . PME

lnto 1t " Bonded "’Non—bonded .' ‘ (.’

o <> Computes @ @ Computes 5 ° ,\ .

« Clean division between ;. Y 4
Reductions ﬁint to Point

P9V -----FTFI D

- Sequential methOdS Patch Integration .

EY “ (IR

7

- Parallel (orchestration) code

Charisma++ example (Simple)

while (e > threshold)
forall11n J
<+e, Ib[1], tb[1]> := J[1].compute(rb[i-1],Ib[1+1]);

] m
. | e UIUC

I

DivCon-DA

Work in Pritish Jetley’s PhD thesis
DivCon: divide-and-conquer
The twist: parallel arrays

E.g. express quicksort using Divcon

— Normal implementation will be swamped by data
movement costs..

— Permutation in every one of log P phases

DivCon-DA supports distributed arrays

— So, partitioning can happen in place, without data
movement

— Data movement becomes the prerogative of the RTS

64

PPL

UIUC

DisTree

« Distributed Trees
« More of a DSL (Domain Specific language)

 Can be used to express
— Barnes-Hut
— Fast-Multipole
— Smooth Particle Hydrodynamics

— Graphics algorithms involving data stored in
trees

65

PPL

UIUC

A View of an Interoperable Future

. ————————————————————————————————

/ \

l i | e
: Higher Level Languages L _ 0
! . Domain Specific |
: ___________ \ f-—-:-:-———-——-:\ : : Frameworks :
) :\ AMPI /: I : o |
I S | | (T T T T T T T T T N\ |
y X 'F::-G_—;::j\' ' | ParFUM | |
| 4 | | \ J |
: l MSA l o) Y :
L e B e tasuiubsuiutat W
N\ | Ay | | || 7 \ 1
| \ Chari Vol e = LNy |
o Ehersmas [Newlangi | | & Coooeoooe
T !

i ' Virtualization based on Migratable Objects |

| supported by an Adaptive Runtime System |

] m
66 UIUC

I

Prescriptions for language design

Aim at a good division of labor (sys/pgmr)
Bottom up development of abstractions

Use an overdecomposition based adaptive
runtime system (and decompose accordingly)

Application-oriented development
Compiler support: important but tough

Don’t underestimate the “small” hurdles to
acceptance

Interoperate
Specialization is a key to higher productivity

We are heading towards an ecosystem of
parallel languages

I am looking for a postdoc More info on Charm++:
and/or a research programmer http://charm.cs.illinois.edu

67

PPL

UIUC

