

ABSTRACT
The increasing computational needs of parallel applications
inevitably require portability across popular parallel architectures,
which are becoming heterogeneous. The lack of a common
parallel framework results in divergent code bases, difficulty in
porting, higher maintenance cost, and, thus difficulty achieving
optimal performance on target architectures.

Our paper examines two representative parallel applications and
describes code structuring and annotations required to derive a
single codebase that is parallelizable across representative
heterogeneous architectures, such as multi-core CPU and GPU.
Drawing on previous work in the area, we create a universal high-
level directive-based framework that supports both of these
architectures, and implements execution on each via translation to
OpenMP and PGI Accelerator API, respectively.

We demonstrate that a high-level framework can support a
common codebase that efficiently executes on heterogeneous
architectures. Our results show that when combined with a state-
of-the-art parallelizing compiler, such framework can yield
performance comparable to custom code or a native language.
Further, we show that the approach increases programmability,
reduces code size and decreases maintenance cost.

General Terms
Measurement, Performance, Languages.

Keywords
Physical Systems, Simulation, Parallel Processing.

1. INTRODUCTION
1.1 Hardware and Application Development
Compute resources at major supercomputing centers have recently
exhibited a steady trend of increasing heterogeneity. Today, many
standalone machines and some clusters have both multi-core
CPUs and GPUs. However, most legacy codes have not evolved
to exploit these architectures fully. In this paper, we look at two
scientific applications: ddcMD (molecular dynamics) [1] and
Heart Wall (image processing) [2] and describe developments
required to make them portable across the two architectures.

We have observed a common development pattern in these
applications. Typically, large parallel applications are only
coarsely parallelized with MPI for execution on homogeneous
clusters, with serial execution at each node. When this
programming model is extended to multiple cores at each node,

we can only further optimize the serial code at the level of each
node. However, the increasing computational needs of parallel
applications can eventually lead to opportunities to improve
efficiency by parallelizing the application for execution on multi-
core CPUs or accelerators such as GPUs. These parallel
architectures, especially GPUs, can significantly increase node
computation capabilities while in many cases decreasing the
requirement on the size of the cluster. Efficient utilization of these
architectures requires proper parallelization of the serial code.

1.2 Code Structure and Optimizations
We encounter many programming difficulties in transitioning
between architectures. For example, consider a serial code that
consists of several tasks, some represented by loops, that are
arranged intuitively according to sequential steps in the algorithm
rather than dependence relationships between them. While this
hardly makes a difference in case of serial execution, subsequent
parallelization of such code is difficult because it does not expose
available width of parallelism and potential for data sharing in
order to utilize multi-core CPUs or GPUs fully. For the same
reason, merely increasing the number of tasks offloaded to either
of the two architectures is insufficient. The problem is
exaggerated for GPUs, which require the developer to specify two
hierarchical levels of parallelism. We could also imagine code that
was only coarsely parallelized to match a small number of cores in
the CPU. When coding for a GPU, we would have to split each
task in order to exploit fine-grained parallelism and to decrease
the register footprint for higher concurrency. In many cases, code
structuring, that is required for parallelization, alone reduces
control flow overhead and yields improved performance.

Many codes tailor optimizations to specific architectures. One
such optimization bypasses the compiler to ensure the use of
particular instructions by specifying them in the code. Some codes
optimize serial execution by inlining functions and unrolling
loops, both of which increase the register footprint and decrease
the width of available parallelism. Other optimizations include
memory access changes such as alignment via padding or
orchestrating computation to match cache line sizes. While these
custom optimizations may improve performance on a given target
architecture, they often decrease it for other available
architectures. In many cases, transitioning to a more efficient
parallel architecture could provide performance that surpasses that
of code customized for a particular-architecture.

1.3 Need for Portable Code
We conclude that the lack of a common framework to enable
efficient utilization of parallel resources leads to code with poor
overall structure and often necessitates reliance on custom

Experiences with Achieving Portability across
Heterogeneous Architectures

Lukasz G. Szafaryn* Todd Gamblin† Bronis R. de Supinski† Kevin Skadron*
*University of Virginia

{lgs9a, ks7h}@virginia.edu
†Lawrence Livermore National Laboratory

{tgamblin, bronis}@llnl.gov

Part of this work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344 (LLNL- CONF-486291), and was supported in part by
NSF grants CNS-0916908, MCDA-0903471, and the SRC under task 1972.

optimizations to the original serial code. However, code with
custom structure, level of parallelization and optimization tailored
to a specific architecture is often not portable. The process of
porting, if attempted, often results in incorrect architectural and
algorithmic tradeoffs, leading to suboptimal performance. Even if
we manage to port the code across architectures, with all of the
difficulties involved, we are left with multiple semi-optimized and
divergent versions, each expensive to maintain when changes are
made to the underlying algorithm. Therefore, we need
mechanisms to support a single code that exhibits performance
portability. The lack of such a programming model inhibits
progress by scientists because they cannot easily achieve optimal
performance on the available computational resources.

1.4 Optimal Framework
The capability of a compiler to parallelize sequential code
automatically has not been sufficient in the past. Even current
state-of-the-art parallelizing compilers are effective mainly at ILP
(when compiling into VLIW or vector instructions). This
limitation almost always forces manual parallelization to achieve
good performance at DLP and TLP. For clarity and convenience,
many programmers prefer to parallelize code by annotating a
traditional, serial programming language such as Fortran or C
rather than using new languages or extensions that require
changes to the existing code. However, a lack of a common and
efficient framework for heterogeneous architectures necessitates
using new languages that are often hardware-specific in order to
achieve better performance. Our goal is to demonstrate that the
benefits of both can be combined in a single portable, convenient
framework. We advocate the use of a directive-based framework
and show that it can support efficient parallelization.

1.5 Our Approach and Contributions
We first demonstrate the concept of code portability across
multiple architectures in terms of syntax, for which we create our
own portable framework. Drawing on previous work in this area
we follow the approach of OpenMP [3] and the PGI Accelerator
API [4], popular directive-based frameworks for multi-core CPUs
and NVIDIA GPUs [5]. Our framework combines functionality of
the two frameworks in the form of a single set of directives that
are portable across the two architectures. In order to implement
execution of our framework on these architectures, we build a
source-to-source translator that transforms our directives to those
in OpenMP or the PGI Accelerator API.

Next, we illustrate the concept of portability in terms of
performance. In order to achieve that, we structure the parallel
code properly to facilitate use of our framework and efficient
mapping of workload onto target architectures. We group similar
independent tasks to maximize the width of parallelism. In order
to make the code suitable for GPUs, we split long tasks to exploit
fine-grained parallelism and to improve concurrency by limiting
the register footprint. In order to make the code readable and
amenable to the application of our directives, we ensure that the
computation of the code, usually in nested loops, is kept generic.
The remaining parts of the code, that include setup and allocation,
as well as custom statements associated with particular APIs are
all implemented in a separate code section. As much as possible,
we avoid breaking loops, unrolling and conditional statements, at
the cost of minimal redundant computation.

We validate our approach through performance evaluation of the
two applications on multi-core CPUs and GPUs. We are only
concerned with tasks processed at each node. Therefore we
assume that the amount of work at each node is appropriately
balanced by the higher-level code. We outline specific
considerations for each application and architecture, and we
discuss the benefits of our approach in terms of portability,
programmability, performance and code maintenance. Also, based
on our experiences with parallel applications, we propose
extensions to our framework, for improved hardware utilization,
which we plan to implement in the future. Our paper makes the
following contributions.

• Demonstration of the feasibility of maintaining a generic
version of code portable across multiple architectures via the
use of a single high-level framework.

• Description of the modifications to our two applications that
facilitate correct use of high-level directives.

• Presentation of a convenient framework that combines and
extends features of other frameworks into a coherent set of
directives that are portable across architectures.

• Demonstration of a source-to-source translation of our
framework into OpenMP and the PGI Accelerator API for
execution on multi-core CPUs and GPUs.

• Illustration of efficient cross-architecture parallelization with
high-level directives aided by existing parallelizing compilers.

• Analysis of the tradeoffs between various aspects of the
approach that include portability, programmability,
performance and code maintenance.

1.6 Organization of the Paper
The remainder of this paper is organized as follows. Section 2
gives background information on parallel application structure
and extraction of parallelism in different architectures. Section 3
describes related work. Section 4 details our annotations. Section
5 provides an overview of our experimental setup and
methodology. Sections 6 and 7 present the two applications on
which our study focuses including their portable implementation
and the corresponding performance. Section 8 discusses the
benefits of our programming approach and considerations for
particular applications and architectures. Section 9 summarizes
our work. Section 10 outlines possible future research. This paper
is best viewed in color.

2. BACKGROUND
Parallel applications are usually structured as a system of nested
loops, each corresponding to different levels of parallelism (TLP
or DLP). While Amdahl’s law provides a theoretical performance
limit based on the code’s parallelism, the amount of computation
at each level of parallelism and its mapping to the architecture
determine the actual speedup. A typical heterogeneous cluster
node is equipped with a multi-core CPU and an accelerator. While
multi-core CPUs only allow access to individual cores,
accelerators such as GPUs, Cell BE [6] and ClearSpeed [7]
expose a multi-level hierarchy of processing elements to the
programmer. These elements are arranged into groups that
naturally correspond to levels of parallelism in applications. Each
group typically collectively executes a task, while elements inside
each group exploit data parallelism within the task. In accelerators
such as GPUs, the second group of elements executes in lock-step
and incurs some penalty in terms of computation and memory
latency when threads diverge on a conditional statement.

3. RELATED WORK
While experiences with application development and
transformation described in this paper are original and specific to
our work, we build on significant previous research in parallel
frameworks. Inadequate functionality of existing parallel
frameworks for recent architectures motivates our framework.

In the case of multi-core CPU execution, early languages such as
Cilk [8] use library functions for automatic parallelization of
typical tasks such as looping and reduction. Subsequent
developments such as TBB [9] also abstract the aspects of thread
management away from the programmer. Unlike our approach,
these solutions make changes to the existing code, use
parallelizing algorithms tailored for shared-memory and lack
features required for describing multi-level parallelism. OpenMP,
on the other hand, facilitates execution on multi-core CPUs via
the use of high-level directives that annotate parallel constructs,
which is similar to our approach. However, it provides only a
small set of directives that limits its support only to single-level
parallelism in a shared-memory system.

CUDA [5] and OpenCL [10] enable parallel execution on GPUs
(and other devices, including CPUs, in the case of OpenCL). Both
languages facilitate efficient parallelization but require the use of
explicit low-level statements, which increase the learning effort
and the amount of repetitive coding involved. Cetus [11] and
proposed future OpenMP extensions [12], on the other hand, use
high-level directives to implement execution on multiple
architectures including CPUs and GPUs. The PGI Accelerator
API uses similar concepts with significantly better compiler
support, but its support is limited to GPUs. These frameworks rely
on the parallelizing capability of the compiler when translating to
the native language. While these frameworks are similar in form
and functionality to our approach, they do not provide a single set
of directives that can be used on both multi-core CPUs and GPUs.

We are aware of flexible application-specific programming
interfaces [13] as well as those for molecular dynamics
applications [14] that support heterogeneous platforms. However,
these rely on the use of libraries that implement specific
functionality and, unlike our approach, they do not provide a
general framework for a wide range of applications.

4. OUR FRAMEWORK
4.1 Form and Functionality
The form of our framework closely follows that of the PGI
Accelerator API, but its functionality is extended with respect to
that in the PGI Accelerator API in order to support multi-core
CPUs. The following section gives a general overview of the
current features in our framework, which are largely derived from
those in the PGI Accelerator API. Currently, the functionality of
our framework is limited to that of OpenMP and the PGI
Accelerator API, the underlying frameworks to which it is
translated. This limitation is currently acceptable since we are still
able to illustrate the concept of portable code. However, based on
experiences with applications presented in the paper, we propose
several extensions to our framework that go beyond the
functionality of the two underlying frameworks. Their use is
illustrated in Figure 2 and they are discussed in Section 10.

4.2 Structure
Our framework provides two types of directives: annotative and
declarative. Annotative directives (Figure 1) describe parallel

control flow and data transfers associated with a particular code
construct. These directives include loop-mapping directives and
data-mapping directives. Multiple annotative directives with
corresponding clauses can be included on the same line.
Alternatively, declarative directives support device setup or
explicit data transfers that are not associated with a particular
construct, but an implicit code region in which they appear.

#pragma api directive-name (clause)

Figure 1. Form of an annotative directive in our framework.

Loop-mapping directives specify the type of execution for an
annotated code segment, such as parallel, vector or sequential. In
the case of a multi-core CPU, a loop annotated with the parallel
directive would execute concurrently in different cores, and any
enclosed loops would execute in series. In case of a GPU, a loop
annotated with the parallel directive would execute in
multiprocessors, while any enclosed loops annotated with the
vector directive would execute in individual processing units
inside a multiprocessor. Data mapping directives such as shared,
private, cache, local, copy, copyin or copyout, on the other hand,
specify the types of data used in the segments,. The first two can
be used with a reference to variables for both multi-core CPUs
and GPUs. The last five are used for caching and allocating in
GPU memory as well as transferring data between GPU and
system memory. Clauses correspond to the number of parallel
tasks, vector widths or the names of the actual variables,
depending on the type of a corresponding directive.

#pragma api data copyin(input) copyout(output)
{

Serial Code
#pragma api compute{

#pragma api id(0) device(1) proc(1:10) parallel(20)
copyin(input2) copyout(output2)

for(i=0; i<x; i++){
#pragma api vector(12) shared(variable A)
for(j=0; j<x; j++){

Parallel Code 1
…

}
}
#pragma api parallel(60) device(1) proc(11:30)

concurrent(0) copyin(input3) copyout(output3)
for(i=0; i<x; i++){

#pragma api vector(14) shared(variable B)
for(j=0; j<x; j++){

Parallel Code 2
…

}
…

}

Figure 2. Example of a structured code written with our
framework (with proposed extensions discussed in Section 10).

Our framework assumes the use of both, generic directives that
are applicable to all architectures, and specific directives that are
supported only by some, architectures (e.g., GPUs). As of now,
the framework requires specification of the target device in the
code, so that it can generate code with appropriate directives. We
envision that the future runtime with native support for our
framework would be aware of the devices present in the system
and determine applicability of directives automatically. We

provide an example of a code that uses both annotative and
declarative directives in Figure 2.

As seen in the code example, #pragma our_api data specifies a
region at the beginning of which data is copied into a GPU and at
the end of which it is possibly copied out. Backed by the
functionality of the PGI parallelizing compiler, our framework
should only require a coarse grained annotation of the code, via
#pragma our_api compute, that specifies the region to be
parallelized for the target architecture. The fine-grained loop
mapping directives described earlier should only help the
compiler efficiently map the application onto the features of the
underlying hardware. Since we expect that the compiler can also
attempt to parallelize loops with no annotations, we annotate them
with sequential directive to avoid parallelization.

5. SETUP AND METHODOLOGY
We configured ddcMD with 1000 small boxes with 120 particles
in each. The Heart Wall application processes 104 video frames,
609x590 pixels each, with 20 inner and 30 outer sample points,
80x80 pixels each.

We first structure the existing C code for these applications and
then extend them with our framework directives. Our source-to-
source translator, written in Perl, converts such codes to OpenMP
and the PGI Accelerator API. We then compile the codes with
PGCC [4] for multi-core CPUs and NVIDIA GPUs. We also
developed GPU codes, written in CUDA, for each application and
compiled with NVCC [5] for performance comparisons. We use
the same CUDA codes for estimating GPU-specific overheads.

We present performance results that compare architecture-specific
codes and our portable codes executing on three architectures
(single-core CPU, multi-core CPU and GPU) in terms of kernel
code lengths and performance. We obtain these results on a single
machine, equivalent to a cluster node, equipped with an 8-core
Intel Xeon X5550 2.67GHz CPU and NVIDIA GeForce GTX460
GPU.

Our results do not account for the overhead of source-to-source
translation, which would disappear if the directives were
supported natively by the compiler. We refer to NVIDIA
terminology [5] when describing GPU optimizations. In order to
make a fair comparison between line counts, we include one
directive per line in our codes. Since translation of directives is
mostly straightforward, as seen in Figures 5-7 and 10-12, we do
not discuss it in the paper.

6. ddcMD APPLICATION
6.1 Functionality and Algorithm
The ddcMD application calculates particle potential and
relocation due to mutual forces between particles within a large
3D space. This space is divided into cubes, or large boxes, that
are allocated to individual cluster nodes (Figure 3). The large box
at each node is further divided into cubes, called boxes. 26
neighbor boxes surround each box (the home box). Home boxes at
the boundaries of the particle space have fewer neighbors.
Particles only interact with those other particles that are within a
cutoff radius since ones at larger distances exert negligible forces.
Thus the box size s chosen so that cutoff radius does not span
beyond any neighbor box for any particle in a home box, thus
limiting the reference space to a finite number of boxes. Since
particle interactions are mutual, the result can update 2 particles
while reducing the required work.

Figure 3. Partitioning of computation in ddcMD application.

For every particle in orange area, interactions with all
particles in the surrounding yellow area are calculated.

Figure 4 shows the ddcMD code structure that executes on a
node. The code has 2 groups of nested loops enclosed in the
outermost loop, which processes home boxes. For any particle in
the home box, the 1st and 2nd nested loops process interactions
with other particles in the home box and particles in all neighbor
boxes. The processing of each particle consists of a single stage of
calculation that is enclosed in the innermost loop.

Figure 4. Original ddcMD loop structure. In portable code,
section in blue is merged with the remaining structure.

6.2 Structure of Portable Code and Results
We made several changes to support performance portability. In
order to simplify the loop structure for convenient application of
high-level directives, we collapsed the 3D loop that processes
boxes according to dimensions in the large box to a single
dimension. We combined loops that calculate interactions with

Select home box

Select neighbor box

Select home particle

Process interactions
with neighbor par.

Loop
for # of
home

particles
(120)

Loop for
of

home
boxes
(1000)

Loop for
of

neighbor
particles

(120)

Loop for
of

neighbor
boxes
(26)

Select home particle

Process interactions
with home par.

Loop for
of

home
particles

(120)

Loop for
of

home
particles

(120)

particles in home and neighbor boxes to increase the width of
parallelism. The lack of a fine-grained synchronization
mechanism required that the parallel version of the code only
updates one particle instead of two, which increased the amount
of work. In order to facilitate efficient GPU execution,
convergence of threads and data access were improved by
avoiding conditionals on the cutoff radius, which resulted in a
small amount of additional work. Also, we converted nested
pointer structures to relative indices to make them valid when
transferring to GPU memory. All ISA and memory-specific
optimizations were removed at a small performance cost.

Conversion of indices to partitioned space
#pragma api data copyin(box[0:#_boxes-1]) \

copyin(pos[0:#_par.-1]) copyin(chr[0:#_par.-1]) \
copyout(dis[0:#_par.-1]){

#pragma api compute{
#pragma api parallel(30) private(…) \

cache(home_box)
for(i=0; i<#_home_boxes; i++){

Home box setup
#pragma api sequential
for(j=0; j<#_neighbor_boxes; j++){

Neighbor box setup
pragma api parallel vector (128) private(…) \

cache(neighbor_box)
for(k=0; k<#_home_particles; k++){

pragma api sequential
for(l=0; l<#_neighbor_particles;l++){

Calculation of interactions
}

…
}

Figure 5. Portable ddcMD code.

Conversion of indices to partitioned space
omp_set_num_threads(30);
#pragma omp parallel for private(…)
for(i=0; i<#_home_boxes; i++){

Home box setup
for(j=0; j<#_neighbor_boxes; j++){

Neighbor box setup
for(k=0; k<#_home_particles; k++){

for(l=0; l<#_neighbor_particles;l++){
Calculation of interactions

}
…

}

Figure 6. Portable ddcMD code translated to OpenMP.
Statements in blue represent changes due to translation.

Figure 5 illustrates general structure of the resulting portable code
written in our framework, while Figure 6 and Figure 7 show
translations of this code to OpenMP and PGI Accelerator API,
respectively. We rearranged the processing of home-neighbor
particle interactions in the two innermost loops to increase
locality and order of reference, which in turn improved cache
utilization in multicore CPUs and stride memory access in GPUs.
While, the processing of boxes was parallelized across cores in
CPU or multiprocessors in GPU, the processing of enclosed
particles was vectorized, but only in case of a GPU. We specified
the upper bound of 30 processing units for the parallel task and
128-wide vector for the vector task in order to make a match

between task sizes and available GPU resources. The code
involves transferring of data between GPU and system memories,
declaration of private variables and no explicit allocation on the
device. Table 1 compares performance and code lengths, which
we discuss in Section 8.

Conversion of indices to partitioned space
#pragma acc data region copyin(box[0:#_boxes-1]) \

copyin(pos[0:#_par.-1]) copyin(chr[0:#_par.-1]) \
copyout(dis[0:#_par.-1]){

#pragma acc region{
#pragma acc parallel(30) independent private(…) \

cache(home_box)
for(i=0; i<#_home_boxes; i++){

Home box setup
#pragma acc sequential
for(j=0; j<#_neighbor_boxes; j++){

Neighbor box setup
pragma acc parallel vector (128) private(…) \

cache(neighbor_box)
for(k=0; k<#_home_particles; k++){

pragma acc sequential
for(l=0; l<#_neighbor_particles;l++){

Calculation of interactions
}

…
}

Figure 7. Portable ddcMD code translated to PGI Accelerator
API. Statements in blue represent changes due to translation.

Table 1.Performance of ddcMD Application.

Arch. Code

Feature Framework
Kernel
Length
[lines]

Exec.
Time [s]

Speedup
[x]

1 1-core
CPU Original C 47 56.19 1

2 1-core
CPU Structured C 34 73.73 0.76

3 8-core
CPU Structured OpenMP 37 10.73 5.23

4 GPU GPU-
specific CUDA 59 5.96 9.43

5 96 9.43

6 1-core
CPU

Structured
Portable

Our
Framework 47 73.72 0.76

7 8-core
CPU

Structured
Portable

Our
Framework 47 10.73 5.23

8 GPU Structured
Portable

Our
Framework 47 7.11 7.91

9 47 7.91

10 GPU Init/Trans
Overhead (CUDA) --- 0.87 ---

7. HEART WALL APPLICATION
7.1 Functionality and Algorithm
The Heart Wall application tracks the movement of a mouse heart
over a sequence of 609x590 ultrasound frames (images) to
observe response to a stimulus. For a long sequence of frames,
images are arranged into batches and offloaded to individual
nodes for parallel processing (Figure 8). In its initial stage, not
included in our code, the program performs image processing
operations on the first frame in a batch to detect initial, partial
shapes of inner and outer heart walls and place sample points on

them. Due to dependency on the feature detection, the processing
of subsequent frames in a batch must proceed sequentially. The
application tracks the movement of heart walls by detecting
displacement of image areas under sample points as shapes of
heart walls change throughout the remaining frames. Green and
blue dots in Figure 8 indicate sample points that mark inner and
outer heart walls, respectively.

Figure 8. Partitioning of computation in Heart Wall
application. Movement of areas marked with blue and green

squares is tracked throughout a sequence of frames.

Figure 9. Original Heart Wall loop structure. In portable code,
section in blue is merged with the remaining structure.

Figure 9 shows the Heart Wall code structure that executes on a
node. The code has 2 groups of nested loops enclosed in the
outermost loop. The outermost loop processes frames from the
partitioned sequence of frames. The 1st and 2nd groups of loops

track features around sample points on inner and outer heart
walls, respectively. The processing of each sample point consists
of several sequential tracking stages included in the innermost
loops that are interleaved by control statements.

7.2 Structure of Portable Code and Results
We made several changes to support performance portability.
Even though the processing of inner and outer points is almost
identical, the original code separated the two and used two
corresponding sets of variables and arrays. We consolidated this
processing in order to simplify the structure of the loops for
convenient application of high-level directives and to decrease the
number of data-mapping directives. The lack of a fine-grained
synchronization mechanism between sequential stages in feature
tracking required full synchronization after each stage. In order to
facilitate efficient GPU execution, we combined a few interleaved
sequential code regions with the parallel ones and executed them
with the full vector width specified.
Processing of inputs from earlier stages.
for(i=0; i<#_frames; i++){

Read frame
#pragma api data copyin(frm[0:frm_siz-1]) \

copyin(ini_loc[0:#_smp_pnts.-1]) \
local(con/cor[0:#_pixels]) copyout[fin_loc[0:#_.-1]){

#pragma api compute{
#pragma api parallel(30)
for(j=0; j<#_sample_points; j++){

#pragma api vector(512) private(…)
for(i=0; i<#_pixels; i++){

Convolving/correlating with templates
}
#pragma api vector(512) private(…)
for(i=0; i<#_pixels; i++){

Determining displacement
}

…
}

Figure 10. Portable Heart Wall code.

Processing of inputs from earlier stages.
for(i=0; i<#_frames; i++){

Read frame
omp_set_num_threads(30);
#pragma omp parallel for private(…)
for(j=0; j<#_sample_points; j++){

for(i=0; i<#_pixels; i++){
Convolving/correlating with templates

}
for(i=0; i<#_pixels; i++){

Determining displacement
}

…
}

Figure 11. Portable Heart Wall code translated to OpenMP.
Statements in blue represent changes due to translation.

Figure 10 illustrates general structure of the resulting portable
code written in our framework, while Figure 11 and Figure 12
show translations of this code to OpenMP and PGI Accelerator
API, respectively. Similarly to ddcMD, we rearranged processing
of sequential tracking stages in the innermost loops to increase

Process outer sample
point

Process Pixels Loop for #
of pixels
(80x80)

Loop for
of outer

sample
points
(30)

Loop for #
of frames

(104)

Read frame (I/O)

Process pixels

Select inner sample
point

Loop for #
of pixels
(80x80)

Loop for
of inner

sample
points
(20)

locality and order of reference. We parallelized processing of
sample points and vectorized processing of each detection stage.
We set the upper bound of processing units to 30 and vector width
to 512. In addition to transferring data between the GPU and
system memories as well as declaring private variables, the code
explicitly allocates temporary variables in GPU memory. Table 2
compares performance and code lengths, which we discuss in
Section 8.

Processing of inputs from earlier stages.
for(i=0; i<#_frames; i++){

Read frame
#pragma acc data region copyin(frm[0:frm_siz-1]) \

copyin(ini_loc[0:#_smp_pnts.-1]) \
local(con/cor[0:#_pixels]) copyout[fin_loc[0:#_.-1]){

#pragma acc region{
#pragma acc parallel(30) independent
for(j=0; j<#_sample_points; j++){

#pragma acc vector(512) independent
private(…)

for(i=0; i<#_pixels; i++){
Convolving/correlating with templates

}
#pragma acc vector(512) independent

private(…)
for(i=0; i<#_pixels; i++){

Determining displacement
}

…
}

Figure 12. Portable Heart Wall code translated to PGI
Accelerator API. Statements in blue represent changes due to

translation.

Table 2. Performance of Heart Wall application.

 Arch. Code
Feature Framework

Kernel
Length
[lines]

Exec.
Time [s]

Speed-up
[x]

1 1-core
CPU Original C 132 117.21 1

2 1-core
CPU Structured C 124 112.44 1.04

3 8-core
CPU Structured OpenMP 138 15.84 7.40

4 GPU GPU-
specific CUDA 156 6.54 17.92

5 294 17.92

6 1-core
CPU

Structured
Portable

Our
Framework 144 112.44 1.14

7 8-core
CPU

Structured
Portable

Our
Framework 144 15.84 8.09

8 GPU Structured
Portable

Our
Framework 144 7.21 16.25

9 144 16.25

10 GPU Init/Trans
Overhead (CUDA) --- 1.13 ---

8. DISCUSSION
8.1 Performance
Improving programmability primarily motivates our work so we
focus on our programming experiences. However, we evaluate the
performance of our portable code to demonstrate that it is close to

that of lower level implementations that require more coding
effort.

The structuring of the original ddcMD code required for proper
application of our directives decreased its performance by 31%
due to removing of custom optimizations and regularization of the
parallel control flow (row 1, Table 1). However, in case of Heart
Wall, similar techniques improved the performance of the original
code by 4% due to organizing the more regular parallelism better
and removing some of the control flow overheads (row 1, Table
2). While CUDA uses more notations to describe parallelism, our
framework requires additional notations for specifying private
variables. While different in structure, due to that reason, these
codes can have similar size (row 4, 8, Table 1, 2).

Our results for both applications illustrate that performance of our
translated portable codes scales with the number of CPU cores
(row 6, 7, Table 1, 2) and significantly increases with the use of a
GPU (row 8, Table 1, 2). The GPU version requires longer
compilation due to underlying translation from PGI Accelerator
API to CUDA. It also incurs more delay at run time due to
communication with the GPU driver. Nevertheless, our results
show that these overheads are small (row 10, Table 1, 2) relative
to the performance gain that the GPU provides. Due to the same
overheads as well as efficiency of the PGI parallelizing compiler,
there is an expected slight difference in performance between out
GPU implementation and that of CUDA (row 4, 8, Table 1, 2).
Although, we use NVIDIA GPUs for our work, many of the
lessons learned apply to other accelerators that share the concept
of hierarchical structure.

8.2 Feasibility
We conclude that generic code that uses high-level directives can
exploit parallel node architectures to provide performance beyond
that of any specifically optimized serial code, even when
accounting for overheads due to regularization of control flow in
parallel code (row 5, 9, col 6, Table 1, 2). Therefore, programmers
should focus their efforts on writing portable code rather than
optimizing legacy serial code.
However, the most important conclusion that we derive from our
work is that we can achieve efficient execution on parallel
architectures using high-level directives. While portable codes
may incur some penalty due to the general way of describing
parallel tasks, our results show that the performance difference is
very small. This proves that high-level directives provide
sufficient descriptive capability to achieve optimal performance.
Therefore we can avoid low-level languages with specific calls to
the runtime. The performance of the portable code depends on
how well programmer structures the code and applies the
directives. While good performance on a given architecture may
still require the use of many specific annotations, we demonstrate
how one coherent framework can support parallel computation on
multiple architectures while keeping the code simple and generic.

8.3 Programming and Maintenance
Using a high-level framework improves programmability because
it extends the language to target common code constructs, such as
loops, to a range of devices. It also does not require a specific
code structure. Portability across a range of architectures as well
as the efficiency in describing parallelism for them even further
illustrates the programmability of the approach. Due to these

factors, a high-level framework approach is likely to gain wide
acceptance.

Having a single code base reduces code maintenance costs, which
are significant for large codes bases that tend to change
frequently. The overall size of each of the applications presented
in the paper decreased by over 50% compared to when we
maintain separate single/multi-core CPU and GPU versions (row
5, 9, col 4, Table 1, 2). Even if custom optimizations become
required, maintaining a single code base makes subsequent
adjustments or porting to any target architecture more feasible.

8.4 Implementation Problems
When developing our portable codes and source-to-source
translator, we encountered several problems that are all related to
the current state of the art of OpenMP and the PGI Accelerator
API. OpenMP does not support array privatization, which
requires the programmer to allocate private copies of the array.
PGI does not support structures and function calls, which are
common in parallel applications. While our source-to-source
translator tries to compensate for these restrictions, they still limit
our solutions. The lack of support for convenient directives such
as loop collapsing in PGI compiler kept us from implementing
these in our framework. Also, GPU translations of our code
require the use of independent directives to help PGI compiler
properly parallelize loops.

9. CONCLUSIONS
Our experiences with writing portable code for the applications
presented in the paper as well as with developing our framework
lead us to the following conclusions.

• A common high-level annotation framework can support
efficient execution across architecture types.

• Correct use of this framework with the support of the current
state-of-the-art parallelizing compilers can yield comparable
performance to a custom, low-level code.

• Our approach results in increased programmability across
architectures and decreased code maintenance cost.

10. FUTURE WORK
Based on our experiences with applications presented in the
paper, we propose 3 extensions to our framework that are
described below. For future work, we plan to extend our source-
to-source translator to include code analysis and generation
required to implement these. If implemented, the last 2 extensions
would allow concurrent execution of two sequential sets of nested
loops present in both ddcMD and Heart Wall. In order to show
projected performance gain due to these features in our results, we
made equivalent manual changes to these codes by merging the
loops, as described in Sections 6.2 and 7.2.

One feature that we propose is assignment of tasks to particular
devices. We envision that our future runtime will provide
get_devices() statement for obtaining a list of available devices.
The programmer would then annotate each outermost loop with
the ID of the device on which to execute that segment of code via
the device(#) directive, as seen in Figure 2. The code could be
annotated with multiple IDs in order to request collaborative
execution as presented in previous research [15].

Another feature that we propose is the explicit specification of
concurrent code execution. In order to facilitate this feature, we

expect that programmer labels code sections with particular IDs
via the id(#) directive. Concurrent execution of two sections of
code could be requested by specifying the ID of the second
section via the concurrent(#) directive when annotating the first
section.

In order for code to execute concurrently on the same accelerator
device, as specified for each section of code by device(#)
directives, the GPU kernel must be limited to a specific range of
processing units through the set_number_processors() directive,
which is another proposed feature of our framework. This
directive can also confine a kernel to a general number of
processing units, through a range defined by the compiler.

11. REFERENCES
[1] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R.

de Supinski, J. Sexton, J and A. Gunnels. 100+ TFlop
Solidification Simulations on BlueGene/L. In Proceedings of SC
05. Seattle, WA. 2005

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.Lee, and K.
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of IISWC '09. IEEE Computer Society,
Washington, DC, USA, 44-54.

[3] OpenMP. < http://openmp.org/wp/>
[4] PGI Accelerator API. <http://www.pgroup.com/resources/

accel.htm>
[5] NVIDIA CUDA Programming Guide 3.2. <http://developer.

download.nvidia.com >
[6] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. 2007. Cell

broadband engine architecture and its first implementation: a
performance view. IBM J. Res. Dev. 51, 5 (September 2007),
559-572.

[7] ClearSpeed CSX700. <http://support.clearspeed.com/
documentation/hardware/ >

[8] Robert D. Blumofe, Christopher F. Joerg, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. “Cilk: An Efficient
Multithreaded Runtime System.” PPoPP '95. July 19-21, 1995,
Santa Barbara, California, pp. 207-216.

[9] Intel Threading Building Blocks. <http://threadingbuildingblocks.
org/documentation.php>

[10] Khronos Group. OpenCL. < http://www.khronos.org/opencl/>
[11] S. Lee, S. Min, and R. Eigenmann. 2009. OpenMP to GPGPU: a

compiler framework for automatic translation and optimization. In
Proceedings of PPoPP '09. ACM, New York, NY, USA, 101-110.

[12] Accelerator support in future OpenMP. <http://openmp.org/wp/
2011/02/31-draft-specs-ready-for-public-comment/>

[13] P. Hanrahan. Domain-Specific Languages for Heterogeneous GPU
Computing. <http://www.graphics.stanford.edu/~hanrahan/talks/
dsl/dsl1.pdf>

[14] Gromacs. < http://www.gromacs.org/>
[15] C. Luk, S. Hong, and H. Kim. 2009. Qilin: exploiting parallelism

on heterogeneous multiprocessors with adaptive mapping. In
Proceedings of MICRO 42. ACM, New York, NY.

