
 

 

  
ABSTRACT 
The increasing computational needs of parallel applications 
inevitably require portability across popular parallel architectures, 
which are becoming heterogeneous. The lack of a common 
parallel framework results in divergent code bases, difficulty in 
porting, higher maintenance cost, and, thus difficulty achieving 
optimal performance on target architectures. 

Our paper examines two representative parallel applications and 
describes code structuring and annotations required to derive a 
single codebase that is parallelizable across representative 
heterogeneous architectures, such as multi-core CPU and GPU. 
Drawing on previous work in the area, we create a universal high-
level directive-based framework that supports both of these 
architectures, and implements execution on each via translation to 
OpenMP and PGI Accelerator API, respectively. 

We demonstrate that a high-level framework can support a 
common codebase that efficiently executes on heterogeneous 
architectures. Our results show that when combined with a state-
of-the-art parallelizing compiler, such framework can yield 
performance comparable to custom code or a native language. 
Further, we show that the approach increases programmability, 
reduces code size and decreases maintenance cost. 

General Terms 
Measurement, Performance, Languages. 

Keywords 
Physical Systems, Simulation, Parallel Processing. 

1. INTRODUCTION 
1.1 Hardware and Application Development 
Compute resources at major supercomputing centers have recently 
exhibited a steady trend of increasing heterogeneity. Today, many 
standalone machines and some clusters have both multi-core 
CPUs and GPUs. However, most legacy codes have not evolved 
to exploit these architectures fully. In this paper, we look at two 
scientific applications: ddcMD (molecular dynamics) [1] and 
Heart Wall (image processing) [2] and describe developments 
required to make them portable across the two architectures. 

We have observed a common development pattern in these 
applications. Typically, large parallel applications are only 
coarsely parallelized with MPI for execution on homogeneous 
clusters, with serial execution at each node. When this 
programming model is extended to multiple cores at each node, 

we can only further optimize the serial code at the level of each 
node. However, the increasing computational needs of parallel 
applications can eventually lead to opportunities to improve 
efficiency by parallelizing the application for execution on multi-
core CPUs or accelerators such as GPUs. These parallel 
architectures, especially GPUs, can significantly increase node 
computation capabilities while in many cases decreasing the 
requirement on the size of the cluster. Efficient utilization of these 
architectures requires proper parallelization of the serial code. 

1.2 Code Structure and Optimizations 
We encounter many programming difficulties in transitioning 
between architectures. For example, consider a serial code that 
consists of several tasks, some represented by loops, that are 
arranged intuitively according to sequential steps in the algorithm 
rather than dependence relationships between them. While this 
hardly makes a difference in case of serial execution, subsequent 
parallelization of such code is difficult because it does not expose 
available width of parallelism and potential for data sharing in 
order to utilize multi-core CPUs or GPUs fully. For the same 
reason, merely increasing the number of tasks offloaded to either 
of the two architectures is insufficient. The problem is 
exaggerated for GPUs, which require the developer to specify two 
hierarchical levels of parallelism. We could also imagine code that 
was only coarsely parallelized to match a small number of cores in 
the CPU. When coding for a GPU, we would have to split each 
task in order to exploit fine-grained parallelism and to decrease 
the register footprint for higher concurrency. In many cases, code 
structuring, that is required for parallelization, alone reduces 
control flow overhead and yields improved performance. 

Many codes tailor optimizations to specific architectures. One 
such optimization bypasses the compiler to ensure the use of 
particular instructions by specifying them in the code. Some codes 
optimize serial execution by inlining functions and unrolling 
loops, both of which increase the register footprint and decrease 
the width of available parallelism. Other optimizations include 
memory access changes such as alignment via padding or 
orchestrating computation to match cache line sizes. While these 
custom optimizations may improve performance on a given target 
architecture, they often decrease it for other available 
architectures. In many cases, transitioning to a more efficient 
parallel architecture could provide performance that surpasses that 
of code customized for a particular-architecture. 

1.3 Need for Portable Code 
We conclude that the lack of a common framework to enable 
efficient utilization of parallel resources leads to code with poor 
overall structure and often necessitates reliance on custom 
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optimizations to the original serial code. However, code with 
custom structure, level of parallelization and optimization tailored 
to a specific architecture is often not portable. The process of 
porting, if attempted, often results in incorrect architectural and 
algorithmic tradeoffs, leading to suboptimal performance. Even if 
we manage to port the code across architectures, with all of the 
difficulties involved, we are left with multiple semi-optimized and 
divergent versions, each expensive to maintain when changes are 
made to the underlying algorithm. Therefore, we need 
mechanisms to support a single code that exhibits performance 
portability. The lack of such a programming model inhibits 
progress by scientists because they cannot easily achieve optimal 
performance on the available computational resources. 

1.4 Optimal Framework 
The capability of a compiler to parallelize sequential code 
automatically has not been sufficient in the past. Even current 
state-of-the-art parallelizing compilers are effective mainly at ILP 
(when compiling into VLIW or vector instructions). This 
limitation almost always forces manual parallelization to achieve 
good performance at DLP and TLP. For clarity and convenience, 
many programmers prefer to parallelize code by annotating a 
traditional, serial programming language such as Fortran or C 
rather than using new languages or extensions that require 
changes to the existing code. However, a lack of a common and 
efficient framework for heterogeneous architectures necessitates 
using new languages that are often hardware-specific in order to 
achieve better performance. Our goal is to demonstrate that the 
benefits of both can be combined in a single portable, convenient 
framework. We advocate the use of a directive-based framework 
and show that it can support efficient parallelization. 

1.5 Our Approach and Contributions 
We first demonstrate the concept of code portability across 
multiple architectures in terms of syntax, for which we create our 
own portable framework. Drawing on previous work in this area 
we follow the approach of OpenMP [3] and the PGI Accelerator 
API [4], popular directive-based frameworks for multi-core CPUs 
and NVIDIA GPUs [5]. Our framework combines functionality of 
the two frameworks in the form of a single set of directives that 
are portable across the two architectures. In order to implement 
execution of our framework on these architectures, we build a 
source-to-source translator that transforms our directives to those 
in OpenMP or the PGI Accelerator API. 

Next, we illustrate the concept of portability in terms of 
performance. In order to achieve that, we structure the parallel 
code properly to facilitate use of our framework and efficient 
mapping of workload onto target architectures. We group similar 
independent tasks to maximize the width of parallelism. In order 
to make the code suitable for GPUs, we split long tasks to exploit 
fine-grained parallelism and to improve concurrency by limiting 
the register footprint. In order to make the code readable and 
amenable to the application of our directives, we ensure that the 
computation of the code, usually in nested loops, is kept generic. 
The remaining parts of the code, that include setup and allocation, 
as well as custom statements associated with particular APIs are 
all implemented in a separate code section. As much as possible, 
we avoid breaking loops, unrolling and conditional statements, at 
the cost of minimal redundant computation. 

We validate our approach through performance evaluation of the 
two applications on multi-core CPUs and GPUs. We are only 
concerned with tasks processed at each node. Therefore we 
assume that the amount of work at each node is appropriately 
balanced by the higher-level code. We outline specific 
considerations for each application and architecture, and we 
discuss the benefits of our approach in terms of portability, 
programmability, performance and code maintenance. Also, based 
on our experiences with parallel applications, we propose 
extensions to our framework, for improved hardware utilization, 
which we plan to implement in the future. Our paper makes the 
following contributions. 

• Demonstration of the feasibility of maintaining a generic 
version of code portable across multiple architectures via the 
use of a single high-level framework. 

• Description of the modifications to our two applications that 
facilitate correct use of high-level directives. 

• Presentation of a convenient framework that combines and 
extends features of other frameworks into a coherent set of 
directives that are portable across architectures.  

• Demonstration of a source-to-source translation of our 
framework into OpenMP and the PGI Accelerator API for 
execution on multi-core CPUs and GPUs. 

• Illustration of efficient cross-architecture parallelization with 
high-level directives aided by existing parallelizing compilers. 

• Analysis of the tradeoffs between various aspects of the 
approach that include portability, programmability, 
performance and code maintenance. 

1.6 Organization of the Paper 
The remainder of this paper is organized as follows. Section 2 
gives background information on parallel application structure 
and extraction of parallelism in different architectures. Section 3 
describes related work. Section 4 details our annotations. Section 
5 provides an overview of our experimental setup and 
methodology. Sections 6 and 7 present the two applications on 
which our study focuses including their portable implementation 
and the corresponding performance. Section 8 discusses the 
benefits of our programming approach and considerations for 
particular applications and architectures. Section 9 summarizes 
our work. Section 10 outlines possible future research. This paper 
is best viewed in color. 

2. BACKGROUND 
Parallel applications are usually structured as a system of nested 
loops, each corresponding to different levels of parallelism (TLP 
or DLP). While Amdahl’s law provides a theoretical performance 
limit based on the code’s parallelism, the amount of computation 
at each level of parallelism and its mapping to the architecture 
determine the actual speedup. A typical heterogeneous cluster 
node is equipped with a multi-core CPU and an accelerator. While 
multi-core CPUs only allow access to individual cores, 
accelerators such as GPUs, Cell BE [6] and ClearSpeed [7] 
expose a multi-level hierarchy of processing elements to the 
programmer. These elements are arranged into groups that 
naturally correspond to levels of parallelism in applications. Each 
group typically collectively executes a task, while elements inside 
each group exploit data parallelism within the task. In accelerators 
such as GPUs, the second group of elements executes in lock-step 
and incurs some penalty in terms of computation and memory 
latency when threads diverge on a conditional statement. 



 

 

3. RELATED WORK 
While experiences with application development and 
transformation described in this paper are original and specific to 
our work, we build on significant previous research in parallel 
frameworks. Inadequate functionality of existing parallel 
frameworks for recent architectures motivates our framework. 

In the case of multi-core CPU execution, early languages such as 
Cilk [8] use library functions for automatic parallelization of 
typical tasks such as looping and reduction. Subsequent 
developments such as TBB [9] also abstract the aspects of thread 
management away from the programmer. Unlike our approach, 
these solutions make changes to the existing code, use 
parallelizing algorithms tailored for shared-memory and lack 
features required for describing multi-level parallelism. OpenMP, 
on the other hand, facilitates execution on multi-core CPUs via 
the use of high-level directives that annotate parallel constructs, 
which is similar to our approach. However, it provides only a 
small set of directives that limits its support only to single-level 
parallelism in a shared-memory system. 

CUDA [5] and OpenCL [10] enable parallel execution on GPUs 
(and other devices, including CPUs, in the case of OpenCL). Both 
languages facilitate efficient parallelization but require the use of 
explicit low-level statements, which increase the learning effort 
and the amount of repetitive coding involved. Cetus [11] and 
proposed future OpenMP extensions [12], on the other hand, use 
high-level directives to implement execution on multiple 
architectures including CPUs and GPUs. The PGI Accelerator 
API uses similar concepts with significantly better compiler 
support, but its support is limited to GPUs. These frameworks rely 
on the parallelizing capability of the compiler when translating to 
the native language. While these frameworks are similar in form 
and functionality to our approach, they do not provide a single set 
of directives that can be used on both multi-core CPUs and GPUs. 

We are aware of flexible application-specific programming 
interfaces [13] as well as those for molecular dynamics 
applications [14] that support heterogeneous platforms. However, 
these rely on the use of libraries that implement specific 
functionality and, unlike our approach, they do not provide a 
general framework for a wide range of applications. 

4. OUR FRAMEWORK 
4.1 Form and Functionality 
The form of our framework closely follows that of the PGI 
Accelerator API, but its functionality is extended with respect to 
that in the PGI Accelerator API in order to support multi-core 
CPUs. The following section gives a general overview of the 
current features in our framework, which are largely derived from 
those in the PGI Accelerator API. Currently, the functionality of 
our framework is limited to that of OpenMP and the PGI 
Accelerator API, the underlying frameworks to which it is 
translated. This limitation is currently acceptable since we are still 
able to illustrate the concept of portable code. However, based on 
experiences with applications presented in the paper, we propose 
several extensions to our framework that go beyond the 
functionality of the two underlying frameworks. Their use is 
illustrated in Figure 2 and they are discussed in Section 10.  

4.2 Structure 
Our framework provides two types of directives: annotative and 
declarative. Annotative directives (Figure 1) describe parallel 

control flow and data transfers associated with a particular code 
construct. These directives include loop-mapping directives and 
data-mapping directives. Multiple annotative directives with 
corresponding clauses can be included on the same line. 
Alternatively, declarative directives support device setup or 
explicit data transfers that are not associated with a particular 
construct, but an implicit code region in which they appear. 

#pragma api directive-name (clause) 
 

Figure 1. Form of an annotative directive in our framework. 

Loop-mapping directives specify the type of execution for an 
annotated code segment, such as parallel, vector or sequential. In 
the case of a multi-core CPU, a loop annotated with the parallel 
directive would execute concurrently in different cores, and any 
enclosed loops would execute in series. In case of a GPU, a loop 
annotated with the parallel directive would execute in 
multiprocessors, while any enclosed loops annotated with the 
vector directive would execute in individual processing units 
inside a multiprocessor. Data mapping directives such as shared, 
private, cache, local, copy, copyin or copyout, on the other hand, 
specify the types of data used in the segments,. The first two can 
be used with a reference to variables for both multi-core CPUs 
and GPUs. The last five are used for caching and allocating in 
GPU memory as well as transferring data between GPU and 
system memory. Clauses correspond to the number of parallel 
tasks, vector widths or the names of the actual variables, 
depending on the type of a corresponding directive. 

#pragma api data copyin(input) copyout(output) 
{ 

Serial Code 
#pragma api compute{ 

#pragma api id(0) device(1) proc(1:10) parallel(20)  
copyin(input2) copyout(output2) 

for(i=0; i<x; i++){ 
#pragma api vector(12) shared(variable A) 
for(j=0; j<x; j++){ 

Parallel Code 1 
… 

} 
} 
#pragma api parallel(60) device(1) proc(11:30)  

concurrent(0) copyin(input3) copyout(output3) 
for(i=0; i<x; i++){ 

#pragma api vector(14) shared(variable B) 
for(j=0; j<x; j++){ 

Parallel Code 2 
… 

} 
… 

} 

Figure 2. Example of a structured code written with our 
framework (with proposed extensions discussed in Section 10). 

Our framework assumes the use of both, generic directives that 
are applicable to all architectures, and specific directives that are 
supported only by some, architectures (e.g., GPUs). As of now, 
the framework requires specification of the target device in the 
code, so that it can generate code with appropriate directives. We 
envision that the future runtime with native support for our 
framework would be aware of the devices present in the system 
and determine applicability of directives automatically. We 



 

 

provide an example of a code that uses both annotative and 
declarative directives in Figure 2. 

As seen in the code example, #pragma our_api data specifies a 
region at the beginning of which data is copied into a GPU and at 
the end of which it is possibly copied out. Backed by the 
functionality of the PGI parallelizing compiler, our framework 
should only require a coarse grained annotation of the code, via 
#pragma our_api compute, that specifies the region to be 
parallelized for the target architecture. The fine-grained loop 
mapping directives described earlier should only help the 
compiler efficiently map the application onto the features of the 
underlying hardware. Since we expect that the compiler can also 
attempt to parallelize loops with no annotations, we annotate them 
with sequential directive to avoid parallelization. 

5. SETUP AND METHODOLOGY 
We configured ddcMD with 1000 small boxes with 120 particles 
in each. The Heart Wall application processes 104 video frames, 
609x590 pixels each, with 20 inner and 30 outer sample points, 
80x80 pixels each. 

We first structure the existing C code for these applications and 
then extend them with our framework directives. Our source-to-
source translator, written in Perl, converts such codes to OpenMP 
and the PGI Accelerator API. We then compile the codes with 
PGCC [4] for multi-core CPUs and NVIDIA GPUs. We also 
developed GPU codes, written in CUDA, for each application and 
compiled with NVCC [5] for performance comparisons. We use 
the same CUDA codes for estimating GPU-specific overheads. 

We present performance results that compare architecture-specific 
codes and our portable codes executing on three architectures 
(single-core CPU, multi-core CPU and GPU) in terms of kernel 
code lengths and performance. We obtain these results on a single 
machine, equivalent to a cluster node, equipped with an 8-core 
Intel Xeon X5550 2.67GHz CPU and NVIDIA GeForce GTX460 
GPU.  

Our results do not account for the overhead of source-to-source 
translation, which would disappear if the directives were 
supported natively by the compiler. We refer to NVIDIA 
terminology [5] when describing GPU optimizations. In order to 
make a fair comparison between line counts, we include one 
directive per line in our codes. Since translation of directives is 
mostly straightforward, as seen in Figures 5-7 and 10-12, we do 
not discuss it in the paper. 

6. ddcMD APPLICATION 
6.1 Functionality and Algorithm 
The ddcMD application calculates particle potential and 
relocation due to mutual forces between particles within a large 
3D space. This space is divided into cubes, or large boxes, that 
are allocated to individual cluster nodes (Figure 3). The large box 
at each node is further divided into cubes, called boxes. 26 
neighbor boxes surround each box (the home box). Home boxes at 
the boundaries of the particle space have fewer neighbors. 
Particles only interact with those other particles that are within a 
cutoff radius since ones at larger distances exert negligible forces. 
Thus the box size s chosen so that cutoff radius does not span 
beyond any neighbor box for any particle in a home box, thus 
limiting the reference space to a finite number of boxes. Since 
particle interactions are mutual, the result can update 2 particles 
while reducing the required work. 

 
Figure 3. Partitioning of computation in ddcMD application. 

For every particle in orange area, interactions with all 
particles in the surrounding yellow area are calculated. 

Figure 4 shows the ddcMD code structure that executes on a 
node. The code has 2 groups of nested loops enclosed in the 
outermost loop, which processes home boxes. For any particle in 
the home box, the 1st and 2nd nested loops process interactions 
with other particles in the home box and particles in all neighbor 
boxes. The processing of each particle consists of a single stage of 
calculation that is enclosed in the innermost loop. 

 

Figure 4. Original ddcMD loop structure. In portable code, 
section in blue is merged with the remaining structure. 

6.2 Structure of Portable Code and Results 
We made several changes to support performance portability. In 
order to simplify the loop structure for convenient application of 
high-level directives, we collapsed the 3D loop that processes 
boxes according to dimensions in the large box to a single 
dimension. We combined loops that calculate interactions with 
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particles in home and neighbor boxes to increase the width of 
parallelism. The lack of a fine-grained synchronization 
mechanism required that the parallel version of the code only 
updates one particle instead of two, which increased the amount 
of work. In order to facilitate efficient GPU execution, 
convergence of threads and data access were improved by 
avoiding conditionals on the cutoff radius, which resulted in a 
small amount of additional work. Also, we converted nested 
pointer structures to relative indices to make them valid when 
transferring to GPU memory. All ISA and memory-specific 
optimizations were removed at a small performance cost. 

Conversion of indices to partitioned space 
#pragma api data copyin(box[0:#_boxes-1]) \ 

copyin(pos[0:#_par.-1]) copyin(chr[0:#_par.-1]) \ 
copyout(dis[0:#_par.-1]){ 

#pragma api compute{ 
#pragma api parallel(30) private(…) \ 

cache(home_box) 
for(i=0; i<#_home_boxes; i++){ 

Home box setup 
#pragma api sequential 
for(j=0; j<#_neighbor_boxes; j++){ 

Neighbor box setup 
pragma api parallel vector (128) private(…) \ 

cache(neighbor_box) 
for(k=0; k<#_home_particles; k++){ 

pragma api sequential 
for(l=0; l<#_neighbor_particles;l++){ 

Calculation of interactions 
} 

… 
} 

Figure 5. Portable ddcMD code. 

Conversion of indices to partitioned space 
omp_set_num_threads(30); 
#pragma omp parallel for private(…) 
for(i=0; i<#_home_boxes; i++){ 

Home box setup 
for(j=0; j<#_neighbor_boxes; j++){ 

Neighbor box setup 
for(k=0; k<#_home_particles; k++){ 

for(l=0; l<#_neighbor_particles;l++){ 
Calculation of interactions 

} 
… 

} 

Figure 6. Portable ddcMD code translated to OpenMP. 
Statements in blue represent changes due to translation. 

Figure 5 illustrates general structure of the resulting portable code 
written in our framework, while Figure 6 and Figure 7 show 
translations of this code to OpenMP and PGI Accelerator API, 
respectively. We rearranged the processing of home-neighbor 
particle interactions in the two innermost loops to increase 
locality and order of reference, which in turn improved cache 
utilization in multicore CPUs and stride memory access in GPUs. 
While, the processing of boxes was parallelized across cores in 
CPU or multiprocessors in GPU, the processing of enclosed 
particles was vectorized, but only in case of a GPU. We specified 
the upper bound of 30 processing units for the parallel task and 
128-wide vector for the vector task in order to make a match 

between task sizes and available GPU resources. The code 
involves transferring of data between GPU and system memories, 
declaration of private variables and no explicit allocation on the 
device. Table 1 compares performance and code lengths, which 
we discuss in Section 8. 

Conversion of indices to partitioned space 
#pragma acc data region copyin(box[0:#_boxes-1]) \ 

copyin(pos[0:#_par.-1]) copyin(chr[0:#_par.-1]) \ 
copyout(dis[0:#_par.-1]){ 

#pragma acc region{ 
#pragma acc parallel(30) independent private(…) \ 

cache(home_box) 
for(i=0; i<#_home_boxes; i++){ 

Home box setup 
#pragma acc sequential 
for(j=0; j<#_neighbor_boxes; j++){ 

Neighbor box setup 
pragma acc parallel vector (128) private(…) \ 

cache(neighbor_box) 
for(k=0; k<#_home_particles; k++){ 

pragma acc sequential 
for(l=0; l<#_neighbor_particles;l++){ 

Calculation of interactions 
} 

… 
} 

Figure 7. Portable ddcMD code translated to PGI Accelerator 
API. Statements in blue represent changes due to translation. 

Table 1.Performance of ddcMD Application. 

 
Arch. Code 

Feature Framework 
Kernel 
Length 
[lines] 

Exec. 
Time [s] 

Speedup 
[x] 

1 1-core 
CPU Original C 47 56.19 1 

2 1-core 
CPU Structured C 34 73.73 0.76 

3 8-core 
CPU Structured OpenMP 37 10.73 5.23 

4 GPU GPU- 
specific CUDA 59 5.96 9.43 

5    96  9.43 

6 1-core 
CPU 

Structured 
Portable 

Our 
Framework 47 73.72 0.76 

7 8-core 
CPU 

Structured 
Portable 

Our 
Framework 47 10.73 5.23 

8 GPU Structured 
Portable 

Our 
Framework 47 7.11 7.91 

9    47  7.91 

10 GPU Init/Trans 
Overhead (CUDA) --- 0.87 --- 

7. HEART WALL APPLICATION 
7.1 Functionality and Algorithm 
The Heart Wall application tracks the movement of a mouse heart 
over a sequence of 609x590 ultrasound frames (images) to 
observe response to a stimulus. For a long sequence of frames, 
images are arranged into batches and offloaded to individual 
nodes for parallel processing (Figure 8). In its initial stage, not 
included in our code, the program performs image processing 
operations on the first frame in a batch to detect initial, partial 
shapes of inner and outer heart walls and place sample points on 



 

 

them. Due to dependency on the feature detection, the processing 
of subsequent frames in a batch must proceed sequentially. The 
application tracks the movement of heart walls by detecting 
displacement of image areas under sample points as shapes of 
heart walls change throughout the remaining frames. Green and 
blue dots in Figure 8 indicate sample points that mark inner and 
outer heart walls, respectively. 

 

Figure 8. Partitioning of computation in Heart Wall 
application. Movement of areas marked with blue and green 

squares is tracked throughout a sequence of frames. 

 

Figure 9. Original Heart Wall loop structure. In portable code, 
section in blue is merged with the remaining structure. 

Figure 9 shows the Heart Wall code structure that executes on a 
node. The code has 2 groups of nested loops enclosed in the 
outermost loop. The outermost loop processes frames from the 
partitioned sequence of frames. The 1st and 2nd groups of loops 

track features around sample points on inner and outer heart 
walls, respectively. The processing of each sample point consists 
of several sequential tracking stages included in the innermost 
loops that are interleaved by control statements. 

7.2 Structure of Portable Code and Results 
We made several changes to support performance portability. 
Even though the processing of inner and outer points is almost 
identical, the original code separated the two and used two 
corresponding sets of variables and arrays. We consolidated this 
processing in order to simplify the structure of the loops for 
convenient application of high-level directives and to decrease the 
number of data-mapping directives. The lack of a fine-grained 
synchronization mechanism between sequential stages in feature 
tracking required full synchronization after each stage. In order to 
facilitate efficient GPU execution, we combined a few interleaved 
sequential code regions with the parallel ones and executed them 
with the full vector width specified. 
Processing of inputs from earlier stages. 
for(i=0; i<#_frames; i++){ 

Read frame 
#pragma api data copyin(frm[0:frm_siz-1]) \ 

copyin(ini_loc[0:#_smp_pnts.-1]) \ 
local(con/cor[0:#_pixels]) copyout[fin_loc[0:#_.-1]){ 

#pragma api compute{ 
#pragma api parallel(30)  
for(j=0; j<#_sample_points; j++){ 

#pragma api vector(512) private(…) 
for(i=0; i<#_pixels; i++){ 

Convolving/correlating with templates 
} 
#pragma api vector(512) private(…) 
for(i=0; i<#_pixels; i++){ 

Determining displacement 
} 

… 
} 

Figure 10. Portable Heart Wall code. 

Processing of inputs from earlier stages. 
for(i=0; i<#_frames; i++){ 

Read frame 
omp_set_num_threads(30); 
#pragma omp parallel for private(…) 
for(j=0; j<#_sample_points; j++){ 

for(i=0; i<#_pixels; i++){ 
Convolving/correlating with templates 

} 
for(i=0; i<#_pixels; i++){ 

Determining displacement 
} 

… 
} 

Figure 11. Portable Heart Wall code translated to OpenMP. 
Statements in blue represent changes due to translation. 

Figure 10 illustrates general structure of the resulting portable 
code written in our framework, while Figure 11 and Figure 12 
show translations of this code to OpenMP and PGI Accelerator 
API, respectively. Similarly to ddcMD, we rearranged processing 
of sequential tracking stages in the innermost loops to increase 
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locality and order of reference. We parallelized processing of 
sample points and vectorized processing of each detection stage. 
We set the upper bound of processing units to 30 and vector width 
to 512. In addition to transferring data between the GPU and 
system memories as well as declaring private variables, the code 
explicitly allocates temporary variables in GPU memory. Table 2 
compares performance and code lengths, which we discuss in 
Section 8. 

Processing of inputs from earlier stages. 
for(i=0; i<#_frames; i++){ 

Read frame 
#pragma acc data region copyin(frm[0:frm_siz-1]) \ 

copyin(ini_loc[0:#_smp_pnts.-1]) \ 
local(con/cor[0:#_pixels]) copyout[fin_loc[0:#_.-1]){ 

#pragma acc region{ 
#pragma acc parallel(30) independent 
for(j=0; j<#_sample_points; j++){ 

#pragma acc vector(512) independent  
private(…) 

for(i=0; i<#_pixels; i++){ 
Convolving/correlating with templates 

} 
#pragma acc vector(512) independent  

private(…) 
for(i=0; i<#_pixels; i++){ 

Determining displacement 
} 

… 
} 

Figure 12. Portable Heart Wall code translated to PGI 
Accelerator API. Statements in blue represent changes due to 

translation. 

Table 2. Performance of Heart Wall application. 

 Arch. Code 
Feature Framework 

Kernel 
Length 
[lines] 

Exec. 
Time [s] 

Speed-up 
[x] 

1 1-core 
CPU Original C 132 117.21 1 

2 1-core 
CPU Structured C 124 112.44 1.04 

3 8-core 
CPU Structured OpenMP 138 15.84 7.40 

4 GPU GPU-
specific CUDA 156 6.54 17.92 

5    294  17.92 

6 1-core 
CPU 

Structured 
Portable 

Our 
Framework 144 112.44 1.14 

7 8-core 
CPU 

Structured 
Portable 

Our 
Framework 144 15.84 8.09 

8 GPU Structured 
Portable 

Our 
Framework 144 7.21 16.25 

9    144  16.25 

10 GPU Init/Trans 
Overhead (CUDA) --- 1.13 --- 

8. DISCUSSION 
8.1 Performance 
Improving programmability primarily motivates our work so we 
focus on our programming experiences. However, we evaluate the 
performance of our portable code to demonstrate that it is close to 

that of lower level implementations that require more coding 
effort. 

The structuring of the original ddcMD code required for proper 
application of our directives decreased its performance by 31% 
due to removing of custom optimizations and regularization of the 
parallel control flow (row 1, Table 1). However, in case of Heart 
Wall, similar techniques improved the performance of the original 
code by 4% due to organizing the more regular parallelism better 
and removing some of the control flow overheads (row 1, Table 
2). While CUDA uses more notations to describe parallelism, our 
framework requires additional notations for specifying private 
variables. While different in structure, due to that reason, these 
codes can have similar size (row 4, 8, Table 1, 2). 

Our results for both applications illustrate that performance of our 
translated portable codes scales with the number of CPU cores 
(row 6, 7, Table 1, 2) and significantly increases with the use of a 
GPU (row 8, Table 1, 2). The GPU version requires longer 
compilation due to underlying translation from PGI Accelerator 
API to CUDA. It also incurs more delay at run time due to 
communication with the GPU driver. Nevertheless, our results 
show that these overheads are small (row 10, Table 1, 2) relative 
to the performance gain that the GPU provides. Due to the same 
overheads as well as efficiency of the PGI parallelizing compiler, 
there is an expected slight difference in performance between out 
GPU implementation and that of CUDA (row 4, 8, Table 1, 2). 
Although, we use NVIDIA GPUs for our work, many of the 
lessons learned apply to other accelerators that share the concept 
of hierarchical structure. 

8.2 Feasibility 
We conclude that generic code that uses high-level directives can 
exploit parallel node architectures to provide performance beyond 
that of any specifically optimized serial code, even when 
accounting for overheads due to regularization of control flow in 
parallel code (row 5, 9, col 6, Table 1, 2). Therefore, programmers 
should focus their efforts on writing portable code rather than 
optimizing legacy serial code. 
However, the most important conclusion that we derive from our 
work is that we can achieve efficient execution on parallel 
architectures using high-level directives. While portable codes 
may incur some penalty due to the general way of describing 
parallel tasks, our results show that the performance difference is 
very small. This proves that high-level directives provide 
sufficient descriptive capability to achieve optimal performance. 
Therefore we can avoid low-level languages with specific calls to 
the runtime. The performance of the portable code depends on 
how well programmer structures the code and applies the 
directives. While good performance on a given architecture may 
still require the use of many specific annotations, we demonstrate 
how one coherent framework can support parallel computation on 
multiple architectures while keeping the code simple and generic. 

8.3 Programming and Maintenance 
Using a high-level framework improves programmability because 
it extends the language to target common code constructs, such as 
loops, to a range of devices. It also does not require a specific 
code structure. Portability across a range of architectures as well 
as the efficiency in describing parallelism for them even further 
illustrates the programmability of the approach. Due to these 



 

 

factors, a high-level framework approach is likely to gain wide 
acceptance. 

Having a single code base reduces code maintenance costs, which 
are significant for large codes bases that tend to change 
frequently. The overall size of each of the applications presented 
in the paper decreased by over 50% compared to when we 
maintain separate single/multi-core CPU and GPU versions (row 
5, 9, col 4, Table 1, 2). Even if custom optimizations become 
required, maintaining a single code base makes subsequent 
adjustments or porting to any target architecture more feasible. 

8.4 Implementation Problems 
When developing our portable codes and source-to-source 
translator, we encountered several problems that are all related to 
the current state of the art of OpenMP and the PGI Accelerator 
API. OpenMP does not support array privatization, which 
requires the programmer to allocate private copies of the array. 
PGI does not support structures and function calls, which are 
common in parallel applications. While our source-to-source 
translator tries to compensate for these restrictions, they still limit 
our solutions. The lack of support for convenient directives such 
as loop collapsing in PGI compiler kept us from implementing 
these in our framework. Also, GPU translations of our code 
require the use of independent directives to help PGI compiler 
properly parallelize loops. 

9. CONCLUSIONS 
Our experiences with writing portable code for the applications 
presented in the paper as well as with developing our framework 
lead us to the following conclusions. 

• A common high-level annotation framework can support 
efficient execution across architecture types. 

• Correct use of this framework with the support of the current 
state-of-the-art parallelizing compilers can yield comparable 
performance to a custom, low-level code. 

• Our approach results in increased programmability across 
architectures and decreased code maintenance cost. 

10. FUTURE WORK 
Based on our experiences with applications presented in the 
paper, we propose 3 extensions to our framework that are 
described below. For future work, we plan to extend our source-
to-source translator to include code analysis and generation 
required to implement these. If implemented, the last 2 extensions 
would allow concurrent execution of two sequential sets of nested 
loops present in both ddcMD and Heart Wall. In order to show 
projected performance gain due to these features in our results, we 
made equivalent manual changes to these codes by merging the 
loops, as described in Sections 6.2 and 7.2. 

One feature that we propose is assignment of tasks to particular 
devices. We envision that our future runtime will provide 
get_devices() statement for obtaining a list of available devices. 
The programmer would then annotate each outermost loop with 
the ID of the device on which to execute that segment of code via 
the device(#) directive, as seen in Figure 2. The code could be 
annotated with multiple IDs in order to request collaborative 
execution as presented in previous research [15]. 

Another feature that we propose is the explicit specification of 
concurrent code execution. In order to facilitate this feature, we 

expect that programmer labels code sections with particular IDs 
via the id(#) directive. Concurrent execution of two sections of 
code could be requested by specifying the ID of the second 
section via the concurrent(#) directive when annotating the first 
section. 

In order for code to execute concurrently on the same accelerator 
device, as specified for each section of code by device(#) 
directives, the GPU kernel must be limited to a specific range of 
processing units through the set_number_processors() directive, 
which is another proposed feature of our framework. This 
directive can also confine a kernel to a general number of 
processing units, through a range defined by the compiler. 

11. REFERENCES 
[1] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R. 

de Supinski, J. Sexton, J and A. Gunnels. 100+ TFlop 
Solidification Simulations on BlueGene/L. In Proceedings of  SC 
05. Seattle, WA. 2005 

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.Lee, and K. 
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous 
computing. In Proceedings of  IISWC '09. IEEE Computer Society, 
Washington, DC, USA, 44-54. 

[3]  OpenMP. < http://openmp.org/wp/> 
[4] PGI Accelerator API. <http://www.pgroup.com/resources/ 

accel.htm> 
[5] NVIDIA CUDA Programming Guide 3.2. <http://developer. 

download.nvidia.com > 
[6] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. 2007. Cell 

broadband engine architecture and its first implementation: a 
performance view. IBM J. Res. Dev. 51, 5 (September 2007),  
559-572.  

[7] ClearSpeed CSX700. <http://support.clearspeed.com/ 
documentation/hardware/ > 

[8] Robert D. Blumofe, Christopher F. Joerg, Charles E. Leiserson, 
Keith H. Randall, and Yuli Zhou. “Cilk: An Efficient 
Multithreaded Runtime System.” PPoPP '95. July 19-21, 1995, 
Santa Barbara, California, pp. 207-216. 

[9] Intel Threading Building Blocks. <http://threadingbuildingblocks. 
org/documentation.php> 

[10]   Khronos Group. OpenCL. < http://www.khronos.org/opencl/> 
[11] S. Lee, S. Min, and R. Eigenmann. 2009. OpenMP to GPGPU: a 

compiler framework for automatic translation and optimization. In 
Proceedings of  PPoPP '09. ACM, New York, NY, USA, 101-110.  

[12] Accelerator support in future OpenMP. <http://openmp.org/wp/ 
2011/02/31-draft-specs-ready-for-public-comment/> 

[13] P. Hanrahan. Domain-Specific Languages for Heterogeneous GPU 
Computing. <http://www.graphics.stanford.edu/~hanrahan/talks/ 
dsl/dsl1.pdf> 

[14] Gromacs. < http://www.gromacs.org/> 
[15] C. Luk, S. Hong, and H. Kim. 2009. Qilin: exploiting parallelism 

on heterogeneous multiprocessors with adaptive mapping. In 
Proceedings of MICRO 42. ACM, New York, NY. 


