
Flash Center for Computational Science 
at The University of Chicago	



Flash Center for Computational Science	



WOLFHPC 
May 31, 2011 

Anshu Dubey 
University of Chicago 

The FLASH Framework: from Giga to 
Exa-scale 



Flash Center for Computational Science 
The University of Chicago 

The FLASH Code Contributors 

❑  Current Contributors in the Center: 
❑  John Bachan, Chris Daley, Milad Fatenejad, Norbert Flocke, Shravan 

Gopal,Dongwook Lee, Prateeti Mohapatra, Klaus Weide,  
❑  Current External Contributors: 

❑  Paul Ricker, John Zuhone, Marcos Vanella, Mats Holmstrom 
❑  Past Major Contributors: 

❑  Katie Antypas, Alan Calder, Jonathan Dursi, Robert Fisher, Murali 
Ganapathy, Timur Linde, Bronson Messer, Kevin Olson, Tomek 
Plewa, Lynn Reid, Katherine Riley, Andrew Siegel, Dan Sheeler, 
Frank Timmes, , Dean Townsley, Natalia Vladimirova, Greg Weirs, 
Mike Zingale 



Flash Center for Computational Science 
The University of Chicago 

Four sections in the talk 

❑  Section 1 :  General information and evolution of 
the framework 

❑  Section 2 : The current code architecture 

❑  Section 3 : History of simulations and the performance 
challenges at various stages of evolution 

❑  Section 4 : Going to exa-scale 

Outline 



Flash Center for Computational Science 
The University of Chicago 

FLASH Capabilities Span a Broad Range… 

Cellular detonation 
Helium burning on neutron stars 

Richtmyer-Meshkov instability 

Laser-driven shock instabilities 
Nova outbursts on white dwarfs Rayleigh-Taylor instability 

Wave breaking on white dwarfs 

Shortly: Relativistic accretion onto NS 

Orzag/Tang MHD 
vortex 

Gravitationally confined 
detonation 

Intracluster interactions 

Magnetic 
Rayleigh-Taylor 

Turbulent Nuclear Burning 

radiative shock  
experiment 

                                The FLASH code 
1.  Parallel, adaptive-mesh refinement (AMR) code 
2.  Block structured AMR; a block is the unit of computation 
3.  Originally designed for compressible reactive flows 
4.  Can solve a broad range of (astro)physical problems 
5.  Portable: runs on many massively-parallel systems 
6.  Scales and performs well 
7.  Fully modular and extensible: components can be 

combined to create many different applications 
8.  Well defined auditing process 
9.  Extensive user base 



Flash Center for Computational Science 
The University of Chicago 

Basic Computational Unit, Block 

❑  The grid is composed of 
blocks 

❑  Cover different fraction of the 
physical domain. 

❑  In AMR blocks at different 
levels of refinement have 
different grid spacing. 



Flash Center for Computational Science 
The University of Chicago 

FLASH Framework Evolution 

Goal : To create robust, reliable, efficient and extensible 
code, that stands the test of time and users 

Challenges 
 Many code components started out stand-alone legacy codes  
 Individual solvers have different characterisitics 
 Complexity of physics dictates lateral interactions between components 

History of architecture evolution 
 FLASH0 : Smashing of Paramesh 
(AMR), Prometheus (shock 
hydrodynamics)  and EOS/Burn (nuclear) 
❑ FLASH1 : Introduction of modular 
architecture & inheritance 

❑ Configuration layer, alternative 
implementations of modules 

❑ FLASH2 : Untangle modules 
❑ Attempt at encapsulation 
❑ Centralized repository of all data 

 FLASH3 : Decentralize data 
management 

❑ Encapsulation accomplished 
❑ Formalization of unit API, and unit 
architecture 
❑ Introduction of sub-units 
❑ Formalization of multiple 
implementations of a unit or subunit 
❑ Resolution of lateral data 
movement issues 



Flash Center for Computational Science 
The University of Chicago 

Data Management in Current Version 

❑  Defined constants for globally known quantities 
❑  Move from centralized database to ownership by individual units 

❑  Arbitration on data shared by two or more units 
❑  Definition of scope for groups of data 

❑  Unit scope data module, one per implementation of the unit 
❑  Subunit scope data module, one per implementation of the subunit 
❑  All other data modules follow the general FLASH inheritance 

❑  The directory in which the module exists, and all of its subdirectories have 
access to the data modules 

❑  Other units can access data through available accessor functions 
❑  For large scale manipulations of data residing in two or more units, 

runtime control transfers back and forth between units 
❑  Avoids lateral transfer of large amounts of data 
❑  Avoids performance degradation 



Flash Center for Computational Science 
The University of Chicago 

 Example of Unit Design 

❑  Non trivial to design several of the physics units in ways that meet 
modularity and performance constraints. 

❑  Eos (equation of state) unit is a good example 
❑  Individual mesh points are independent of each other 
❑  There are several reusable calculations 
❑  Other physics units demand great flexibility from it 

❑  single grid point at a time 
❑  only the interior cells, or only the ghost cells 
❑  a row at a time, a column at a time or the entire block at once 
❑  different grid data structures, and different modes at different times 

❑  Implementations range from simple ideal gas law to table look up 
and iterations for degenerate matter and plasma, with widely differing 
relative contribution in the overall execution time 

❑  Relative values of overall energy and internal energy play role in 
accuracy of results 

❑  Sometimes several derivative quantities are desired as output 



Flash Center for Computational Science 
The University of Chicago 

EOS interface Design 

❑  Hierarchy in complexity of interfaces  
❑  For single point calculation scalar input and output 
❑  For sections of a block or full block vectorized input and output 

❑  wrappers to vectorize and configure the data 
❑  returning derivative quantities if desired  

❑  Different levels in the hierarchy give different degrees of control to 
the client routines 
❑  Most of the complexity is completely hidden from casual users 
❑  More sophisticated users can bypass the wrappers for greater 

control 
❑  Done with elaborate machinery of masks and defined constants 

FLASH Physics Capabilities 
Hydrodynamics (shocks, MHD, RHD, 2T+rad); Flux-Limited Diffusion;  

Laser Energy Deposition; Multimaterial EOS & Opacities; Gravity; 
Nuclear Burning; Material Properties; Source Terms; Cosmology, Particles 



Flash Center for Computational Science 
The University of Chicago 

Infrastructure 

❑  Abstraction of mesh management 
❑  Made possible through sub-units 
❑  Simulations can choose mesh at configuration time 

❑  Paramesh and Chombo for AMR; Chombo or homegrown UG for uniform 
mesh 

❑  IO options 
❑  HDF5 and PnetCDF 
❑  Direct IO as a last resort 

❑  Hierarchical support for logging progress of a simulation 
❑  global and local log-files 

❑  Scalable parallel algorithms for solvers 
❑  Hybridization of multigrid 
❑  Particles mapping and movement algorithms 



Flash Center for Computational Science 
The University of Chicago 

Four sections in the talk 

❑  Section 1 :  General information and evolution of the 
framework 

❑  Section 2 : The current code architecture 

❑  Section 3 : History of simulations and the performance 
challenges at various stages of evolution 

❑  Section 4 : Going to exa-scale 

Outline 



Flash Center for Computational Science 
The University of Chicago 

Architecture : Unit 

❑  FLASH basic architecture unit 
❑  Component of the FLASH code providing a particular functionality 
❑  Different combinations of units are used for particular problem setups 
❑  Publishes a public interface (API) for other units’ use. 
❑  Ex: Driver, Grid, Hydro, IO etc 

❑  Interaction between units governed by the Driver 
❑  Not all units are included in all applications 

❑  Not all subunits of an included unit need to be included in all 
applications 

❑  An object oriented framework imposed upon F90 code through a 
combination of configuration setup tool, FLASH specific Config 
files,  unix directory structure, naming convention, inheritance 
rules and F90 data modules and interfaces 



Flash Center for Computational Science 
The University of Chicago 

Unit Hierarchy 

Unit 
API/stubs 

UnitMain 
Common API 

implementation 
UnitSomething 

API  
implementation 

kernel 

kernel 

kernel 

kernel 

Impl_1 
Remaining  
API impl Impl_2 

Remaining  
API impl 

Impl_3 
Remaining  
API impl 

Common 
Impl 



Flash Center for Computational Science 
The University of Chicago 

Example of a Unit – Grid (simplified) 

Grid 

GridSolvers GridMain GridParticles 

UG 

Paramesh2 paramesh4 

paramesh 

PM4_package 

UG paramesh 

Sieve PttoPt 

local  
API 

Why Local API ?  
Grid_init calls init 
functions for all 

subunits, if subunit 
is not included code 

won’t build. 

PM4dev_ 
package 

GridBC 

GPMapToMesh GPMove 

etc… 



Flash Center for Computational Science 
The University of Chicago 

Functional Component in Multiple Units 

❑  Example Particles 
❑  Position initialization and time integration in Particles unit 
❑  Data movement in Grid unit 
❑  Mapping divided between Grid and Particles 

❑  Solve the problem by moving control back 
and forth between units 

Driver 

Init 

Evolve 

Particles 
Init   Map    Evolve 

Grid 
Init Map Move 



Flash Center for Computational Science 
The University of Chicago 

Four sections in the talk 

❑  Section 1 :  General information and evolution of the 
framework 

❑  Section 2 : The current code architecture 

❑  Section 3 : History of simulations and the 
performance challenges at various stages of 
evolution 

❑  Section 4 : Going to exa-scale 

Outline 



Flash Center for Computational Science 
The University of Chicago 

Performance Challenges 

The Machines 

  Cutting edge == less well tested  
   systems software 

  Highly specialized hardware 
  A new generation every few years 
  Parallel I/O always a challenge 

  Availability is limited  
  Stress testing the code before  

   big runs is extremely challenging 
   (or impossible) 

The Code 

  More than half a million lines 
  Multiphysics with AMR 

  Public code with  
   reasonably large user base 

  Must run on multiple platforms 
  Must be efficient on most  

   platforms 

The layered architecture of the code comes to the rescue 
MPI optimizations at infrastructure level 
Memory optimizations at wrapper level 

Memory and flop optimizations at kernel level 



Flash Center for Computational Science 
The University of Chicago 

 BGL : 32 K nodes 

❑  Weakly compressible 
turbulence simulation 

❑  Lagrangian particles 
frame unscalable 
❑  The metadata 

duplicated on all 
processors 

❑  Limited memory, 
wouldn’t fit. 

❑  Designed a suite of 
new algorithms for 
data movement 



Flash Center for Computational Science 
The University of Chicago 

The GCD Application 

Application Description 
❑  Start the simulation with an off 

center bubble 
❑  The bubble rises to the surface, 

developing Rayleigh-Taylor 
instabilities 

❑  The material cannot escape 
because of the gravity, so it 
races around the star 

❑  At the opposite end, the fronts 
collide to initiate detonation 

Performance Issues 
❑  Load imbalance in flame 
❑  Too much time in gravity 
❑  Memory limitation from particles 
❑  Memory limitation from 

refinement 

Optimizations 
❑  Trade-off between accuracy and time 
❑  Refinement criterion 
❑  Table lookup instead of calculations 



Flash Center for Computational Science 
The University of Chicago 

Multigrid optimization 

❑  Gravity (and specifically the Multigrid solver) is the bottleneck 
❑  Multigrid V-Cycles cause processor starvation on coarse grids 
❑  The Solution : Switch to exact solution at a predetermined level 

❑  Re-arrangement of grid needed; parallel algorithm for mapping  

❑  Motivation: Weak scaling results from a galaxy cluster simulation 



Flash Center for Computational Science 
The University of Chicago 

Four sections in the talk 

❑  Section 1 :  General information and evolution of the 
framework 

❑  Section 2 : The current code architecture 

❑  Section 3 : History of simulations and the performance 
challenges at various stages of evolution 

❑  Section 4 : Going to exa-scale 

Outline 



Flash Center for Computational Science 
The University of Chicago 

Exascale Through Co-Design 

 Challenges 

❑  Parallel IO 
❑  Analysis memory snapshot        

a large fraction of total system 
memory 

❑  Higher degree of macro 
parallelism 
❑  Load balance  
❑  Meta-data handling 

❑  Higher fidelity physics 
dictates greater coupling 
❑  Implicit/semi-implicit treatment 

Possibilities 

❑  Different approach through 
data staging 
❑  Critical vs. non-critical data 
❑  Combine with in situ analysis 

❑  New parallel algorithms 
❑  Trade-off between duplication 

and communication 
❑  Possibly more hierarchy 

❑  Investigate different class of 
numerical algorithms 
❑  Less deterministic 

Inter-node Challenges 



Flash Center for Computational Science 
The University of Chicago 

Intra-Node and Resiliency Challenges 

Challenges 
Intra-Node 
❑  Memory intensive 

computations 
❑  Increasing limits on available 

memory per process 
❑  Bigger working sets 

Faults 
❑  Frequent failures 
❑  Silent errors 

Possibilities 

❑  Aggressive reuse of memory 
❑  Distinguish between cores 
❑  New algorithms 
❑  Programming model 

❑  Stochastic algorithms 
❑  Redundancy 



Flash Center for Computational Science 
The University of Chicago 

Code Maintenance and Co-Design  

❑ Code verification and regression testing 
❑ Expect more non-determinism and async execution models 

to get performance and scalability 
❑ But to do regression testing without reproducibility? 
❑ Will study approaches to selectable determinism 

❑  Changes to compiler or runtime? 
❑  Changes in algorithm formulation, atomization 

❑ Timely incorporation of science advances into the 
co-design (prevent obsolescence of code modules) 
❑ Testing of new algorithms / implementation coming about 

because of new knowledge/insights 



Flash Center for Computational Science 
The University of Chicago 

Co-Design Needs from Application 

❑ Greater encapsulation 
❑  Minimize common data 
❑  Maximize code sections that 

are re-entrant 
❑  Increase isolation between 

layers 
❑  Separate code functionalities 

such that different 
optimizations are applicable 
to different layers 

❑ Minimize kernel 
dependency on 
programming models 

❑  Expose optimization and 
fault tolerance possibilities 
❑  Be clearer about 

dependencies 
❑  Identify critical sections Vs 

the non critical sections 
❑  Define more compact 

working sets 
❑  Explore more inherently robust 

alternative algorithms 
❑  Stochastic Vs deterministic 



Flash Center for Computational Science 
The University of Chicago 

❑ Measurable and predictable performance 
❑  Reliable results within quantified limits 
❑  Retain code portability and performance 

❑  Standardized interfaces for common functionalities 
❑  Libraries and middleware 
❑  Auto-tuning or code to code translation  

❑ Memory management 
❑  Memory bound application  

❑  IO management 
❑  Large volumes of analysis data 
❑  Currently one snapshot roughly 1/10th of memory footprint 
❑  Analysis a judicious combination of in-situ and post processing 

What We Need to Achieve 



Flash Center for Computational Science 
The University of Chicago 

Questions ? 


