The Super Instruction

Architecture
A Block-Oriented Language and
Runtime System for Tensor Algebra
with Very Large Arrays

Beverly A Sanders, Erik
Deumens, Victor Lotrich, and
Nakul Jindal

Motivating Domain:
Computational Chemistry

 Electronic structure calculations (coupled
cluster)

— Dominated by tensor algebra using very large,
dense multi-dimensional arrays

— Irregular access patterns

— Complex algorithms--need abstraction level
that supports experimentation with algorithms

« ACES III
— www.qtp.ufl.edu/ACES

Problem characteristics

« Data Requirements for CCSD
— N = number of electrons

— T amplitudes array: 4-index array of size n?N?

* Need 2-10 copies
* typical values N = 100, n=1000: 80GB

« 3 need rapid access and are usually stored Iin
RAM, others on disk

— Additional arrays for integrals, up to 800GB

Architecture

« Domain specific programming language
— Super instruction assembly language (SIAL)

— scripting language to orchestrate parallelism and data
movement

* Runtime system
— Super instruction Processor (SIP)
— Interprets SIAL bytecode
— manages parallelism
— distributed data structures
- 1/0

« Super instructions
— single node computational kernels
— written in general purpose programming language

Super Instructions and Super

Numbers

 Traditional programming languages
— unit of data: floating point number
— operations: combine floating point numbers

— but operations and data must be aggregated for
good performance

* SIA

— unit of data: super number (block) of floating
point numbers

— 0

— a
b

perations: super instructions combine blocks
gorithms in SIAL are expressed in terms of

ocks and super instructions

Why a new language?

Domain specific language
— expressiveness

 describing algorithms in terms of super instructions and blocks
— A(1,9) = B(I,K) * C(K,J)
— AT(1,J) = A@J,I)

— enforces abstractions

“Scripting” language
— simple compiler
— language can be (and has been) easily extended

— exploit programming language technology
 eclipse-based IDE
« static analyses and refactoring support
» generation of performance models

SIA architecture still takes advantage of highly optimizing
compilers for super instruction implementation

Example: tensor contraction

R =2V Ty

Example: blocked version

RI =2V T/

R(M,N,1,3) =33 3V (M N,L,S) T(L,S,1,d)°

LS Ael oeS

‘M,N,L,S,I,J Index segments of size seg
*Each block R(M,N,1,J) Is a 4-index array of
seg* elements

Example: contraction super
Instruction

R, =2VTY

R(M,N,1,3)" =33V (M,N,L,S) T(LS,1,J)"

LS AelL oeS

R(M ,N,|,J)§VZZSV(I\/I N,L,S)*T(L,S,1,J)

built-in super instruction

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,1,J) = 0.0
doL
do S
get T(L,S,1,J)
execute compute_integrals V(M,N,L,S)
tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J)
tmpsum(M,N,1,J) += tmp(M,N,I,J)
enddo S
enddo L
put R(M,N,I,J) = tmpsum(M,N,1,J)
endpardo M,N,I,J
sip_barrier

10

Implementation in SIAL

Divide iteration
tmpsum(M.N,[.J) = 0.t space among

doL available workers
do S '
and execute In

get T(L,S,1,J)
. garallel.
execute compute_integrals V(M,N,L,

tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,1,J)
tmpsum(M,N,1,3) += tmp(M,N,1,l3) ML,N,1,J count
enddo S Segments
enddo L
put R(M,N,I,J) = tmpsum(M,N,1,J)
endpardo M,N,I,J
sip_barrier

Only parallel construct

Both static and dynamic
load balancing
supported

11

Implementation in SIAL

pardo M.N.|.J
nitialize local
do S block
get T(L,S,1,J)

execute compute_integrals V(M,N,L,S)
tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J)
tmpsum(M,N,1,J) += tmp(M,N,I,J)
enddo S
enddo L
put R(M,N,1,J) = tmpsum(M,N,I,J)
endpardo M,N,l,J
sip_barrier

12

Implementation in SIAL

pardo M,N,1,J Serial loops
;rzpl_sum(M,N,l,J) =0.0 f over
(s 1 declared
get T(L,S,1,J) ranges of

execute compute_integrals V(M,N, Li S
tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J

tmpsum(M,N,I,J) += tmp(M,N,1,J)
enddo S |_ and S
enddo L

out R(M,N,1,J) = tmpsum(M,N,1,J) count
endpardo M,N,l,J Segments

sip_barrier
- 13

Implementation in SIAL

pardo M,N,1.J Request block of
tmpsum(M,N,I,J) = 0.0 : :
distributed array

do L
do S ‘

execute compute_integrals V(M,N,L,S)
tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J)
tmpsum(M,N,1,J) += tmp(M,N,1,J)
enddo S
enddo L
put R(M,N,1,J) = tmpsum(M,N,1,J)
endpardo M,N,l,J
sip_barrier

14

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,1,J) = 0.0 CompUte bIOCk
do L of V on
d0s demand.

get T(L,S,I,J
execute compute_integrals V(M,N,L,S)

tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J)
tmpsum(M,N,I,J) += tmp(M,N,1,J)
enddo S _
enddo L Overlaps with

put R(I\/I,N,I,J):tmpsum(l\/I,N,I,J) Communication
endpardo M,N,l,J f T
O

15

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,1,J) = 0.0
do L Block
doS contraction.

get T(L,S,I1,J)

T T(L,S,1,J) if

enddo L necessary
put R(M,N,1,J) = tmpsum(M,N,I,J)

endpardo M,N,l,J

sip_barrier

16

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,I,J) = 0.0
do L Accumulate
do S
get T(L,S,1,) sum.

tmpsum(M,N,1,J) += tmp(M,N,1,J)
enddo S
enddo L
put R(M,N,1,J) = tmpsum(M,N,I,J)
endpardo M,N,l,J
sip_barrier

17

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,I,J) = 0.0
o Store block
get T(L,S,1,) to distributed

,Lfarray

S,1,3)
1J)

execute compute integrals \J#¥
tmp(M,N,1,J) = V(M,N,L,Sy”
tmpsum(M,N,I,J) +=
enddo S
C1OICLHC)
put R(M,N,I,J) = tmpsum(M,N,1,J)
endpardo M,N,l,J
sip_barrier

18

Implementation in SIAL

pardo M,N,l,J
tmpsum(M,N,1,J) = 0.0
doL
do S
get T(L,S,1,J)

execute compute_integrals V(M,N,L,S)
tmp(M,N,1,J) = V(M,N,L,S) * T(L,S,I,J)
tmpsum(M,N,1,J) += tmp(M,N,1,J)
enddo S
enddo L
put R(M,N,I,J) = tmpsum(M N,I,J

endardo M,N,I,J

Synchronize
one-sided
communication

19

Key idea: "Programming with
blocks”

» Algorithms are expressed in terms of

blocks

— Individual array elements not mentioned in SIAL
program—only in the implementation of the super
Instruction.

— Each super instruction performs a substantial
amount of computation

— Each communication transmits substantial amount
of data

20

Consequences of
‘programming with blocks”

« Algorithms can be effectively parallelized

e Source programs are independent of
— number of processors
— segment sizes
— data layout

Super Instructions

Built-in
— contraction in example

Provided by programmer
— compute_integrals in example
— reusable, but most programmers will need to write some

Efficient implementation for each platform

— written in Fortran and/or C to take advantage of highly
optimizing compilers
— operates on local blocks, no communication

Unconstrained, can escape abstraction

Language elements: Array types

static
— small, replicated

local
— Individual blocks for intermediate results

temp

— local partial array, at least one dimension fully
formed

distributed
served (disk-backed)

23

Language elements: Index types

* Three kinds
— simple: counts interations
— segment ;. counts segments
— subindex : counts subsegments

* Finite range given in declaration

— Uses symbolic constants given a value at
runtime
« Depends on size of problem
« Size of segments

— Used in array declarations

24

Index kiter =1, cc_iter
aoindexmu = 1. norb *Index declarqtlons
. B *Use symbolic
aoindex nu =1, norb
_ B constants
aoindex lambda = 1, norb -Domain specific
— type names
Different segment
types may be
segmented
mobindex j = bbocc, ebocc differently.
mobindex j1= bbocc, ebocc

_/

— *Array declarations

distributed Vxixi(mu,il,lambda,i) *Size determined by
distributed Vxxii(mu,nu,id,i) _ Ir}dex
distributed Vxjxj(mu,j1,lambda,j) ype system

distributed Vxxjj(mu,nui,il.j) Sneures consistent

Subindices

* Problem
— C(a,b,c,I,m,n) = A(a,b,c,k)*B(k,I,m,n)
— Each block of A and B has seg* element
— Each block of C has seg® element—not feasible

— Reducing seg makes rest of computation perform
poorly

« Subindices allow dealing with subblocks in a
way that is consistent with the way blocks are
handled in SIAL

26

Subindices, continued

moaindex j = 1,4

moaindexi=1,4 f
subindex i of | sl
temp Xi(i,))
temp Xii(ii,j) 2
pardo |
doi ’
doirini
Xii(ii,j) = Xi(i,j)
enddo i Loop over
endo | subblocks and

endpardo j extract

Runtime System: SIP

* Organization

— set of worker nodes with one master
» distributed array blocks managed by workers

— set of I1/O nodes that handle served (disk-
backed arrays)

* Single threaded implementation (currently)
— loops over op table containing SIAL byte code
— periodically checks for MPI messages

Data Management

« Handles distributed data layout
— data access very irregular
— currently no attempts to exploit locality or block
ownership
 Memory at individual nodes

— partitioned into “stacks” of blocks of fixed sizes that
match the segment sizes of the run

— workers responsible for holding blocks of distributed
arrays

— caches blocks of distributed and served arrays

Dry Run

* Performed as part of SIAL program initialization

« Estimates memory usage
— Determines feasibility of computation on system
— Used to set up memory configuration
 local memory (block stacks)
« distributed data layout

» Typical SIA application:
— Initialization

— Several consecutive SIAL programs

« Dry run and initialization of memory configuration
between each one

« Data may be saved on disk

One-sided Communication

Distributed arrays: put, get, +=
— workers cache blocks

Served arrays: prepare, request, +=

— |/O servers cache blocks and write to disk
azily
SIP manages data descriptors used to
locate blocks of distributed and served
arrays

Uses asynchronous message passing

Experience

* Used to implement ACES Il
— www.qtp.ufl.edu/ACES

«Capabilities
— Hartree-Fock(RHF, UHF)
— MBPT(2) energy, gradient, hessian
— CCSD(T) energy and gradient (DROPMO)
— EOM-CC excited state energies

http://www.qtp.ufl.edu/ACES

Ports

SGI Altix SMP

Cray XT3

Cray XT4/XT5

IBM Cluster 1600 with Power 5+

Linux Networx Advanced Technology Cluster

Sun Opteron cluster

BlueGene/P

Power7s running Linux and AlX (Blue Drop, Blue
Waters)

Tuning

* Tuning the SIP runtime
— Easy with similar systems

— BlueGene has been the most problematic
port

* Tuning the super instructions that
iImplement computational kernels

— Can proceed independently from tuning the
SIP

— Can be done incrementally

Support for Tuning

* Low overhead but useful profiling info
— Blocking time per pardo loop
— Time for each superinstruction

* Ongoing work:
— Generate performance model from SIAL code

— Instantiate with measured data from network
benchmarks and 2-node SIAL run

Programmer Productivity

Anecdotal experience:
— weeks with SIA vs months with straight MPI

Not a silver bullet: It is still possible to write poorly
performing programs.

Each run provides timing information for each
super instruction
— low overhead but useful profiling info

Programs need adjustment when used for
significantly different problem sizes

Ongoing and future work

Open system

— Python interface

— Re-architect and define interfaced for subsystems
Enhance runtime

— Petascale (Blue Waters)

— Multicore

— GPU

Enhance expressiveness of SIAL

— High rank arrays

— Parallel regions

— Support better software engineering
Generalize

— Other domains (types, symbolic constants)

Performance modeling

— Understand performance on very large systems without extensive
experimentation

