
The Super Instruction

Architecture
A Block-Oriented Language and

Runtime System for Tensor Algebra

with Very Large Arrays

Beverly A Sanders, Erik

Deumens, Victor Lotrich, and

Nakul Jindal

Motivating Domain:

Computational Chemistry

• Electronic structure calculations (coupled

cluster)

– Dominated by tensor algebra using very large,

dense multi-dimensional arrays

– Irregular access patterns

– Complex algorithms--need abstraction level

that supports experimentation with algorithms

• ACES III

– www.qtp.ufl.edu/ACES

2

Problem characteristics

• Data Requirements for CCSD

– N = number of electrons

– T amplitudes array: 4-index array of size n2N2

• Need 2-10 copies

• typical values N = 100, n=1000: 80GB

• 3 need rapid access and are usually stored in

RAM, others on disk

– Additional arrays for integrals, up to 800GB

3

Architecture

• Domain specific programming language
– Super instruction assembly language (SIAL)

– scripting language to orchestrate parallelism and data
movement

• Runtime system
– Super instruction Processor (SIP)

– interprets SIAL bytecode

– manages parallelism

– distributed data structures

– I/O

• Super instructions
– single node computational kernels

– written in general purpose programming language

4

Super Instructions and Super

Numbers

• Traditional programming languages

– unit of data: floating point number

– operations: combine floating point numbers

– but operations and data must be aggregated for
good performance

• SIA

– unit of data: super number (block) of floating
point numbers

– operations: super instructions combine blocks

– algorithms in SIAL are expressed in terms of
blocks and super instructions

5

Why a new language?
• Domain specific language

– expressiveness
• describing algorithms in terms of super instructions and blocks

– A(I,J) = B(I,K) * C(K,J)

– AT(I,J) = A(J,I)

– enforces abstractions

• ―Scripting‖ language
– simple compiler

– language can be (and has been) easily extended

– exploit programming language technology
• eclipse-based IDE

• static analyses and refactoring support

• generation of performance models

• SIA architecture still takes advantage of highly optimizing
compilers for super instruction implementation 6

Example: tensor contraction

7

F










TVR ijij

Example: blocked version

8

F






TVR ijijij

),,,(),,,(),,,(JISLTSLNMVJINMR
ij

LS L S
ij



 








 



•M,N,L,S,I,J index segments of size seg

•Each block R(M,N,I,J) is a 4-index array of

seg4 elements

Example: contraction super

instruction

9

F






TVR ijijij

),,,(),,,(),,,(JISLTSLNMVJINMR
ij

LS L S
ij



 








 




LS

ij
JISLTSLNMVJINMR),,,(*),,,(),,,(



built-in super instruction

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

10

Variable

declarations

and

instantiation

not shown

T and R are

distributed

arrays

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

11

Divide iteration

space among

available workers

and execute in

parallel.

M,N,I,J count

segments

Only parallel construct

Both static and dynamic

load balancing

supported

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

12

Initialize local

block

Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
13

Serial loops

over

declared

ranges of

L,S.

L and S

count

segments

Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

14

Request block of

distributed array

Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

15

Compute block

of V on

demand.

Overlaps with

communication

of T

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

16

Block

contraction.

Wait for

T(L,S,I,J) if

necessary

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

17

Accumulate

sum.

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

18

Store block

to distributed

array

Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

19

Synchronize

one-sided

communication

Key idea: ―Programming with

blocks"

• Algorithms are expressed in terms of

blocks
– Individual array elements not mentioned in SIAL

program—only in the implementation of the super

instruction.

– Each super instruction performs a substantial

amount of computation

– Each communication transmits substantial amount

of data

20

Consequences of

―programming with blocks‖

• Algorithms can be effectively parallelized

• Source programs are independent of

– number of processors

– segment sizes

– data layout

21

Allows tuning on

different systems

without changing

SIAL code

Super Instructions

• Built-in
– contraction in example

• Provided by programmer
– compute_integrals in example

– reusable, but most programmers will need to write some

• Efficient implementation for each platform
– written in Fortran and/or C to take advantage of highly

optimizing compilers

– operates on local blocks, no communication

• Unconstrained, can escape abstraction

22

Language elements: Array types

• static

– small, replicated

• local

– individual blocks for intermediate results

• temp

– local partial array, at least one dimension fully

formed

• distributed

• served (disk-backed)

23

Language elements: Index types

• Three kinds

– simple: counts interations

– segment : counts segments

– subindex : counts subsegments

• Finite range given in declaration

– Uses symbolic constants given a value at
runtime

• Depends on size of problem

• Size of segments

– Used in array declarations

24

index kiter = 1, cc_iter

aoindex mu = 1, norb

aoindex nu = 1, norb

aoindex lambda = 1, norb

moaindex i = baocc, eaocc

moaindex i1= baocc, eaocc

mobindex j = bbocc, ebocc

mobindex j1= bbocc, ebocc

distributed Vxixi(mu,i1,lambda,i)

distributed Vxxii(mu,nu,i1,i)

distributed Vxjxj(mu,j1,lambda,j)

distributed Vxxjj(mu,nu,j1,j)
25

•Index declarations
•Use symbolic

constants

•Domain specific

type names

•Different segment

types may be

segmented

differently.

•Array declarations
•Size determined by

index

•Type system

ensures consistent

use

Subindices

• Problem

– C(a,b,c,l,m,n) = A(a,b,c,k)*B(k,l,m,n)

– Each block of A and B has seg4 element

– Each block of C has seg6 element—not feasible

– Reducing seg makes rest of computation perform

poorly

• Subindices allow dealing with subblocks in a

way that is consistent with the way blocks are

handled in SIAL

26

Subindices, continued
moaindex j = 1,4

moaindex i = 1,4

subindex ii of i
temp Xi(i,j)

temp Xii(ii,j)

..

pardo j

do i

do ii in i

Xii(ii,j) = Xi(ii,j)

…

enddo ii

endo i
endpardo j

27

Loop over

subblocks and

extract

Runtime System: SIP

• Organization

– set of worker nodes with one master

• distributed array blocks managed by workers

– set of I/O nodes that handle served (disk-

backed arrays)

• Single threaded implementation (currently)

– loops over op table containing SIAL byte code

– periodically checks for MPI messages

28

Data Management

• Handles distributed data layout

– data access very irregular

– currently no attempts to exploit locality or block

ownership

• Memory at individual nodes

– partitioned into ―stacks‖ of blocks of fixed sizes that

match the segment sizes of the run

– workers responsible for holding blocks of distributed

arrays

– caches blocks of distributed and served arrays

29

Dry Run

• Performed as part of SIAL program initialization

• Estimates memory usage
– Determines feasibility of computation on system

– Used to set up memory configuration

• local memory (block stacks)

• distributed data layout

• Typical SIA application:
– Initialization

– Several consecutive SIAL programs
• Dry run and initialization of memory configuration

between each one

• Data may be saved on disk

30

One-sided Communication

• Distributed arrays: put, get, +=

– workers cache blocks

• Served arrays: prepare, request, +=

– I/O servers cache blocks and write to disk

lazily

• SIP manages data descriptors used to

locate blocks of distributed and served

arrays

• Uses asynchronous message passing
31

Experience

• Used to implement ACES III

– www.qtp.ufl.edu/ACES

•Capabilities

– Hartree-Fock(RHF, UHF)

– MBPT(2) energy, gradient, hessian

– CCSD(T) energy and gradient (DROPMO)

– EOM-CC excited state energies

32

http://www.qtp.ufl.edu/ACES

Ports

• SGI Altix SMP

• Cray XT3

• Cray XT4/XT5

• IBM Cluster 1600 with Power 5+

• Linux Networx Advanced Technology Cluster

• Sun Opteron cluster
• BlueGene/P

• Power7s running Linux and AIX (Blue Drop, Blue
Waters)

33

Tuning

• Tuning the SIP runtime

– Easy with similar systems

– BlueGene has been the most problematic

port

• Tuning the super instructions that

implement computational kernels

– Can proceed independently from tuning the

SIP

– Can be done incrementally

34

Support for Tuning

• Low overhead but useful profiling info

– Blocking time per pardo loop

– Time for each superinstruction

– …

• Ongoing work:

– Generate performance model from SIAL code

– Instantiate with measured data from network

benchmarks and 2-node SIAL run

35

Programmer Productivity

• Anecdotal experience:

– weeks with SIA vs months with straight MPI

• Not a silver bullet: It is still possible to write poorly

performing programs.

• Each run provides timing information for each

super instruction

– low overhead but useful profiling info

• Programs need adjustment when used for

significantly different problem sizes

36

Ongoing and future work

• Open system
– Python interface

– Re-architect and define interfaced for subsystems

• Enhance runtime
– Petascale (Blue Waters)

– Multicore

– GPU

• Enhance expressiveness of SIAL
– High rank arrays

– Parallel regions

– Support better software engineering

• Generalize
– Other domains (types, symbolic constants)

• Performance modeling
– Understand performance on very large systems without extensive

experimentation
37

