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Motivating Domain: 

Computational Chemistry

• Electronic structure calculations (coupled 

cluster)

– Dominated by tensor algebra using very large, 

dense multi-dimensional arrays

– Irregular access patterns

– Complex algorithms--need abstraction level 

that supports experimentation with algorithms

• ACES III

– www.qtp.ufl.edu/ACES
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Problem characteristics

• Data Requirements for CCSD

– N = number of electrons

– T amplitudes array:  4-index array of size n2N2

• Need 2-10 copies 

• typical values N = 100, n=1000:   80GB

• 3 need rapid access and are usually stored in 

RAM, others on disk

– Additional arrays for integrals, up to 800GB

3



Architecture

• Domain specific programming language
– Super instruction assembly language (SIAL)

– scripting language to orchestrate parallelism and data 
movement

• Runtime system
– Super instruction Processor (SIP)

– interprets SIAL bytecode

– manages parallelism

– distributed data structures

– I/O

• Super instructions
– single node computational kernels

– written in general purpose programming language
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Super Instructions and Super 

Numbers 

• Traditional programming languages

– unit of data:  floating point number

– operations:  combine floating point numbers

– but operations and data must be aggregated for 
good performance

• SIA

– unit of data:  super number (block) of floating 
point numbers

– operations:  super instructions combine blocks

– algorithms in SIAL are expressed in terms of 
blocks and super instructions 
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Why a new language?
• Domain specific language

– expressiveness 
• describing algorithms in terms of super instructions and blocks

– A(I,J) = B(I,K) * C(K,J) 

– AT(I,J) = A(J,I)

– enforces abstractions

• ―Scripting‖ language 
– simple compiler

– language can be (and has been) easily extended

– exploit programming language technology 
• eclipse-based IDE

• static analyses and refactoring support

• generation of performance models

• SIA architecture still takes advantage of highly optimizing 
compilers for super instruction implementation 6



Example:  tensor contraction
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Example:  blocked version

8

F






TVR ijijij

),,,(),,,(),,,( JISLTSLNMVJINMR
ij

LS L S
ij



 








 



•M,N,L,S,I,J index segments of size seg

•Each block R(M,N,I,J) is a 4-index  array of 

seg4 elements



Example:  contraction super 

instruction
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Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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arrays



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Divide iteration 
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and execute in 
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M,N,I,J count 
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Only parallel construct

Both static and dynamic 

load balancing 

supported



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Initialize local 

block



Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Request block of 

distributed array 



Implementation in SIAL

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J
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Compute block 

of V on 

demand.

Overlaps with 

communication 

of T  



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Block 
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T(L,S,I,J) if 

necessary



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Accumulate 

sum.  



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Store block 

to distributed 

array



Implementation in SIAL
pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

execute compute_integrals V(M,N,L,S)

tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier
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Synchronize 

one-sided 

communication



Key idea:  ―Programming with 

blocks"

• Algorithms are expressed in terms of 

blocks
– Individual array elements not mentioned in SIAL 

program—only in the implementation of the super 

instruction.

– Each super instruction performs a substantial 

amount of computation

– Each communication transmits substantial amount  

of data
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Consequences of 

―programming with blocks‖

• Algorithms can be effectively parallelized

• Source programs are independent of

– number of processors

– segment sizes

– data layout

21

Allows tuning on 

different systems 

without changing 

SIAL code



Super Instructions

• Built-in
– contraction in example

• Provided by programmer  
– compute_integrals in example

– reusable, but most programmers will need to write some

• Efficient implementation for each platform
– written in Fortran and/or C to take advantage of highly 

optimizing compilers

– operates on local blocks, no communication

• Unconstrained, can escape abstraction

22



Language elements: Array types

• static

– small, replicated

• local

– individual blocks for intermediate results

• temp

– local partial array, at least one dimension fully 

formed

• distributed

• served (disk-backed)
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Language elements: Index types

• Three kinds

– simple:   counts interations

– segment :  counts segments

– subindex :  counts subsegments

• Finite range given in declaration

– Uses symbolic constants given a value at 
runtime

• Depends on size of problem

• Size of segments

– Used in array declarations

24



index kiter = 1, cc_iter

aoindex mu     = 1, norb

aoindex nu     = 1, norb

aoindex lambda = 1, norb

moaindex i = baocc, eaocc

moaindex i1= baocc, eaocc

mobindex j = bbocc, ebocc

mobindex j1= bbocc, ebocc

distributed Vxixi(mu,i1,lambda,i)

distributed Vxxii(mu,nu,i1,i)

distributed Vxjxj(mu,j1,lambda,j)

distributed Vxxjj(mu,nu,j1,j)
25

•Index declarations
•Use symbolic 

constants

•Domain specific 

type names

•Different segment 

types may be 

segmented 

differently.  

•Array declarations
•Size determined by 

index

•Type system 

ensures consistent 

use



Subindices

• Problem

– C(a,b,c,l,m,n) = A(a,b,c,k)*B(k,l,m,n)

– Each block of A and B has seg4 element

– Each block of C has seg6 element—not feasible

– Reducing seg makes rest of computation perform 

poorly

• Subindices allow dealing with subblocks in a 

way that is consistent with the way blocks are 

handled in SIAL
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Subindices, continued
moaindex j = 1,4

moaindex i = 1,4

subindex ii of i
temp Xi(i,j)

temp Xii(ii,j)

..

pardo j

do i

do ii in i

Xii(ii,j) = Xi(ii,j)

…

enddo ii

endo i
endpardo j

27

Loop over 

subblocks and 

extract



Runtime System:  SIP

• Organization

– set of worker nodes with one master

• distributed array blocks managed by workers

– set of I/O nodes that handle served (disk-

backed arrays)

• Single threaded implementation (currently)

– loops over op table containing SIAL byte code

– periodically checks for MPI messages
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Data Management

• Handles distributed data layout

– data access very irregular

– currently no attempts to exploit locality or block 

ownership

• Memory at individual nodes

– partitioned into ―stacks‖ of blocks of fixed sizes that 

match the segment sizes of the run

– workers responsible for holding blocks of distributed 

arrays

– caches blocks of distributed and served arrays
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Dry Run

• Performed as part of SIAL program initialization

• Estimates memory usage
– Determines feasibility of computation on system

– Used to set up memory configuration

• local memory (block stacks)

• distributed data layout

• Typical SIA application:
– Initialization

– Several consecutive SIAL programs
• Dry run and initialization of memory configuration 

between each one

• Data may be saved on disk
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One-sided Communication

• Distributed arrays:  put, get, +=

– workers cache blocks

• Served arrays:  prepare, request, +=

– I/O servers cache blocks and write to disk 

lazily

• SIP manages data descriptors used to 

locate blocks of distributed and served 

arrays

• Uses asynchronous message passing
31



Experience

• Used to implement ACES III

– www.qtp.ufl.edu/ACES

•Capabilities

– Hartree-Fock(RHF, UHF)

– MBPT(2) energy, gradient, hessian

– CCSD(T) energy and gradient (DROPMO)

– EOM-CC excited state energies

32
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Ports

• SGI Altix SMP

• Cray XT3

• Cray XT4/XT5

• IBM Cluster 1600 with Power 5+

• Linux Networx Advanced Technology Cluster

• Sun Opteron cluster
• BlueGene/P

• Power7s running Linux and AIX (Blue Drop, Blue 
Waters)
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Tuning

• Tuning the SIP runtime

– Easy with similar systems

– BlueGene has been the most problematic 

port

• Tuning the super instructions that 

implement computational kernels

– Can proceed independently from tuning the 

SIP

– Can be done incrementally
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Support for Tuning

• Low overhead but useful profiling info

– Blocking time per pardo loop

– Time for each superinstruction

– …

• Ongoing work:

– Generate performance model from SIAL code

– Instantiate with measured data from network 

benchmarks and 2-node SIAL run
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Programmer Productivity

• Anecdotal experience:  

– weeks with SIA vs months with straight MPI

• Not a silver bullet: It is still possible to write poorly 

performing programs.

• Each run provides timing information for each 

super instruction 

– low overhead but useful profiling info

• Programs need adjustment  when used for 

significantly different problem sizes
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Ongoing and future work

• Open system
– Python interface

– Re-architect and define interfaced for subsystems

• Enhance runtime
– Petascale (Blue Waters)

– Multicore

– GPU

• Enhance expressiveness of SIAL
– High rank arrays

– Parallel regions

– Support better software engineering

• Generalize
– Other domains (types, symbolic constants)

• Performance modeling
– Understand performance on very large systems without extensive 

experimentation
37


