How a Domain-Specific Language
Enables the Automation of
Optimized Code for Dense Linear
Algebra

DxT — Design by Transformation

Bryan Marker, Don Batory,
Jack Poulson, Robert van de Geijn

The Development Cycle

Architecture
changed

Architecture
studied

Implementation
optimized

Algorithm
developed

Algorithm
studied

Algorithm
implemented

Why?

 We already modularize
— Functions, libraries, features
— You don’t inline re-used code, you put it in a function

— Develop DSLs to reduce redundant development for
domains

e We still encode architecture/algorithm specifics
— Can’t re-use next time around
— Doable a few times, not thousands
— Manually break through layers to optimize
e Why don’t we encode reusable, high-level knowledge?
— About algorithms, operations, or architectures

Algorithm: A := (CHOL__BLK_VAR3(A)

CApe | Aex
where Ay is 0 x ()
while m(Arp) <m(Ad) do

. .. A Arp
Partition A (L #)

Determine block size b
Repartition

.! y A{ y .—L”“ .‘l“.] -_ldl'!
(AT L ‘41,‘) o Aw An | A
| Ak Agy | Aoy [Ass

where A, isbhxb

Ay =1{A,)
Ay = Ay TRIL(A;) ™
= Ayy — TRIL (Ay; AL)

Continue with

| -Al““ -4“'1 -41”!
A‘]“ ‘Al]l .1].'
Agp | Azr | Az

endwhile

PartitionDownDiagonal

(A, ATL, ATR,
ABL, ABR, 0);

while(ABR.Height() >0)

{
RepartitionDownDiagonal
(ATL, /**/ ATR, A0O, /**/ A01, AO2,
/*************//****************/

[**/ A10, /**/ Al11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22);

A21_VC_Star.AlignWith(A22);
A21_MC_Star.AlignWith(A22);
A21_MR_Star.AlignWith(A22);
//

1/

Al11_Star_Star = Al1;
lapack::internal::LocalChol(Lower, A11_Star_Star);
Al11 = A11_Star_Star;

A21_VC_Star = A21;

blas::internal::LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,
(F)1, A11_Star_Star, A21_VC_Star);

A21_MC_Star = A21_VC_Star;
A21_MR_Star = A21_VC_Star;

// (A21AT[* ,MC])AT A21AH[* ,MR] = A21[MC,*] A21AH[* ,MR]

// =(A21 A217H)[MC,MR]
blas::internal::LocalTriangularRankK
(Lower, ConjugateTranspose,

(F)-1, A21_MC_Star, A21_MR_Star, (F)1, A22);

A21=A21_MC_Star;
//

1/

A21_VC_Star.FreeAlignments();
A21_MC_Star.FreeAlignments();
A21_MR_Star.FreeAlignments();

SlidePartitionDownDiagonal
(ATL, /**/ ATR, A0O0, A01, /**/ A02,
[**/ A10, Al1, /**/ A12,

/*************//*****************/

ABL, /**/ ABR, A20, A21, /**/ A22);

Performance of Elemental
on 8192 cores

60 -|—e— Elemental-BG /P
—a— Elemental-BG /P SMP
— ScaLAPACK

Time [seconds]
M
S
|

o
=
|

0 0.2 0.4 0.6 0.8 1
Dimension 10°

What Does an Expert Do?

Starts with algorithm

Chooses architecture-specific implementation

— Break through abstraction boundaries (when brave
enough)

— In-line code to expose details and inefficiencies
Optimizes the code

Transforms from algorithm to high-performance code

Uses a DSL (when possible)

— Abstract functionality into DSL

— Maintain structure in code

— Make transformations common across algorithms

Start with the algorithm

Chol(Lower, Ai1);

Trsm(Right, Lower, ConjugateTranspose, NonUnit,
(T)1, A11, A21);

TriangularRankK(Lower, ConjugateTranspose,
(T)-1, A21, A21, (T)1, A22);

Inline Some Parallelization Choices

Al11_Star_Star = Al1l;
lapack::internal::LocalChol(Lower, A11_Star_Star)
Al11 = Al11_Star_Star;

A21_VC_Star = A21;
A11_Star_Star = Al1;
blas::internal::LocalTrsm
(Right, Lower, ConjugateTranspose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);
A21 = A21_VC_Star,;

A21_MC_Star = A21;
A21_MR_Star = A21;
blas::internal: LocalTriangularRankK
(Lower, ConjugateTranspose,
(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

Inline Some Redistribution Choices

A11_Star_Star = Al1l;
lapack::internal::LocalChol(Lower, Aii_Star_Star)
A11 = A11_Star_Star;

A21_VC_Star = A21;

A11_Star_Star = All;

blas::internal: :LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

\\ A21 = A21_VC_Star;

A21_MC_Star = A21_VC_Star;

A21 = A21_MC_Star;

\\ A21_MC__Star = A21;

A21_VC_Star = A21;
A21_MC_Star = A21_VC_Star;
\\ A21_MC__Star = A21;
A21_VC_Star = A21;
A21_MR_Star = A21_VC_Star;

blas: :internal: :LocalTriangularRankK
(Lower, ConjugateTranspose,
(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

Optimize

Al11_Star_Star = Al1l;
lapack::internal::LocalChol(Lower, Aii_Star_Star)
A11 = A11_Star_Star,

A21_VC_Star = A21;

blas::internal::LocalTrsm
(Right, Lower, ConjugateTranspose, NonUnit,
(T)1, A11_Star_Star, A21_VC_Star);

A21_MC_Star = A21_VC_Star;
A21 = A21_MC_Star;

A21_MR_Star = A21_VC_Star;

blas: :internal: :LocalTriangularRankK
(Lower, ConjugateTranspose,
(T)-1, A21_MC_Star, A21_MR_Star, (T)1, A22);

10

Automate the Process!

For operations in DSL, give implementations
options

— Architecture-dependent

— Code an expert would inline

Give transformations to optimize patterns found
in DSL

Transform just like an expert
Use Model-Drive Engineering (MDE)
Design by Transformation (DxT)

11

DSLs Enable This

Many years of software engineering efforts
DSLs provide well-layered and abstracted
codes

DSLs define and limit set of operations to be
performed

DSL make it easier to see common
transformations in domain

Speaking of DSLs

Distinguished by constructs specific to domain

Allows definition of domain-specific
relationships compactly (preferably
declaratively)

In our opinion, this rules out traditional view
of libraries

— (Controversial)

E.g. relational SQL (database queries)

View as DAG
in the spirit of MDE
(this is a DSL)

CHOLLOOPBODY

DCHOL

N

>

DTRSM

DHERKLN

Transform with Implementations
(choose refinement of abstractions)

DCHOL
____________________ .
| |
(@) A;,—~ DCHOL {~A,,' ==e AH—:—- [Me,Mgl=[*,*] +LCHOL (| []2 [McMg] A,
e |
DTRSM
r- """ ""--"----"""F""""—"="—"="—"""—""—-"—-—" |
| .
A A11'_|_’ [Mc,Mg]— [*,%] :
(b)A” DTRSM [+A,,' =—e : LTRSM (~ [Vo,*12[Mc, Mgl A,
° A21_|> [MoMR]_'[Vc’*] :
ey ——
_____ DHERKLN_ _ _ _ _ _ __
A21|_|—> [MC,MR] _'[MR’*] :
, |
A21| ’ ' |
©As'—| DHERKLN [—+A,,' —me Ag [Mc,Mg] =M, *] |
A,,— A L LHERKLN H=A,,'
22 |

Transform to Optimize

Grammars and Meta-Models

Models are algorithms/code
Meta-model defines correct models

Ensures proper types and properties in code

— Code compiles

Meta-model for domain is grammar for DSL

Design by Transformation

e Two types of transformations come naturally
— Box rewrites to specify abstraction implementations
— Optimizations

e API for common abstractions already developed
— BLAS, LAPACK, MPI

— These are the abstraction boxes
— Implementations/refinements are known

e Optimizations known to experts

Correct by Construction

e Start with correct model
— E.g. derived to be correct with FLAME

* Apply correct transformations
e End with correct model

— Compiles for target architecture
— Gets same answer as starting model

The big idea...

Encode
transformations to be
reused not code that is

disposable

A Mechanical System Would...

 Have many instances of the two
transformations

* Apply these to an input algorithm

 Transform the algorithm to many
implementations of varying efficiency

— Combinatorial explosion

How Much Does it Cost?

* An expert uses rough idea of runtimes to make
implementation choices

— Know which implementations are better than others
 For DXT generate all implementation and

estimate costs (e.g. runtime or power
consumption)

— Search the space of possibilities
— Attach cost to each of DSL's possible operations

e Choose “best” implementations from the entire
space

Cost Functions

Operation Cost
LocalChol (n x n) yn*/3
LocalTrsm (Right, Lower, n x n, m x n) | ymnn

A11_Star_Star = A11 (m x n)

A21_MC_Star = A21_VC_Star (m x n)
A21_MR_Star = A21_VC_Star (m x n)

aflog, p] + 5‘%177"1
aflog, c] + <=~ 2n

a(1 + [logy r]) + B(Tn + r=lmp)

e Include machine-specific and problem-size

parameters

e First-order approximations

e Just meant to separate bad choices from good

23

Prototype System

Takes input algorithm graph

Generates all implementations from known
transformations

10s-10,000s of implementations

— 2 Cholesky variants

— 1 TRSM variant

— 3 GEMM variants

— 1 variant of preprocessor operation for generalized
eigenvalue problem

Same or better implementations as hand-generated

These are indicative of many more operations that can
be supported by DxT

Cholesky Cost Estimates

x10° Estimated Operation Runtime
I I 1 |
—&— |niined

—8— Optimized 1
| —4+— Optimized 2 (Best Predicied)
— Other Generated Implementations

o
n

Estimated Runtima (cydes)
sl I ©
w L] w w o &~

—
L)

05

25

What DSLs Do For Us

* Enable us to layer code/functionality

— Understand the layers
— Encode transformations to break through layers

e Enable us to define meta-models/grammar to
guide transformations and ensure correctness

e Limit the amount of operations (and cost
functions) we need to support because
functionality abstracted and re-used

DSLs Enable Us To...

Encode
transformations to be
reused not code that is

disposable

Future Work

Encode more transformations

Target SMP and sequential algorithms
— Low-level BLAS kernels

Improve cost estimates
Algorithmic transformations (variants)
Try other domains in HPC

Replace libraries like libflame and Elemental with
libraries of algorithms and transformations

— Not just auto-tune

Questions?

Read our SC11 Submission
FLAME and libflame

— www.cs.utexas.edu/~flame

Elemental
— code.google.com/p/elemental

bamarker@cs.utexas.edu
Thanks to NSF and Sandia fellowships
Rui Goncalves, Taylor Riche, Andy Terrel

//A.;=Chol(A,,)

A1l Star Star=Al11;

lapack::internal::LocalChol(Lower, A11 Star Star);
All =Al11 Star Star;

[/A,;= A, TRIL(A.{)T

A21 VC _Star=A21;

blas::internal::LocalTrsm

(Right, Lower, ConjugateTranspose, NonUnit,
(F)1, A11 Star Star, A21 VC Star);

/1Ay = Ag; = TRIL(A A7)
A21 MC_ Star=A21 VC Star;
A21 MR _Star =A21 VC Star;
blas::internal::LocalTriangularRankK
(Lower, ConjugateTranspose,
(F)-1, A21_MC_Star, A21_MR_Star, (F)1, A22);

A21=A21 MC_Star;

30

Elemental’s Layering

Applications
Elemental
Solvers
Elemental
BLAS/Decomposition/Reduction/- - -
Elemental Elemental
Local Operations Redistribution Operations
Local Compute Packing Collective
Kernels Routines | Communication
(BLAS/LAPACK) (MPI or RCCE)

31

What This Gets Us

e Encode knowledge about component operations

— Generate implementations and optimize with
transformations

* Libraries of transformations used to generate
libraries of code (DxT)

— Not libraries of specific code for operation A on
architecture B with characteristics C

— Libraries of how to use many A’s, B’s, and C’s

— Next generation libflame and Elemental consist of
algorithms and transformations

