
Seeking a sustainable software
model for scientific simulation

Robert J. Harrison
harrisonrj@ornl.gov

robert.harrison@utk.edu

mailto:harrisonrj@ornl.gov
mailto:robert.harrison@utk.edu

Funding
 DOE: Exascale co-deisgn, SciDAC, Office of Science

divisions of Advanced Scientific Computing Research and
Basic Energy Science, under contract DE-AC05-
00OR22725 with Oak Ridge National Laboratory, in part
using the National Center for Computational Sciences.

 DARPA HPCS2: HPCS programming language evaluation
 NSF CHE-0625598: Cyber-infrastructure and Research

Facilities: Chemical Computations on Future High-end
Computers

 NSF CNS-0509410: CAS-AES: An integrated framework
for compile-time/run-time support for multi-scale
applications on high-end systems

 NSF OCI-0904972: Computational Chemistry and
Physics Beyond the Petascale

National benefits of exascale and
associated technologies

 Basic science currently drives high-end HPC
 It consumes (nearly) all petascale cycles

 Product design/engineering at terascale or below

 Lack of expertise is the major barrier to adoption

 We must change this
 Mature simulation (e.g., comp. chem.) must eventually

become relevant to new technologies, policy decisions, ...

 White house OSTP initiative in HPC (Tom Kalil)
 Vision of simulation rapidly transferring basic science &

engineering knowledge and enabling new technologies

Exascale technologies
 Architecture – data is everything

 power 0.1 → 100 GFLOP/Watt memory 0.3 → 0.03 byte/FLOP

 cores 8 → 64-1024+ per node number of cores 100K → 100+M

 concurrency 106 → 109

 Will be just a corner of entire ecosystem

 In 2020 1EF = $100M = 1000 PF
→ 1PF ≤ 0.1M

 S/W still more expensive than H/W

 Most science will happen at petascale

 Hardware

 Will leverage high-end server and
professional computing platforms

 Software

 Must run everywhere

1 core

HPC futures we’d like to avoid
Complexity constrains all of our
ambitions (cost & feasibility)

● Science, physics, theory, ...
— Constantly evolving but can take

years to implement
— Scalable algorithms and math

● Software
— Crude parallel programming

tools with explicit expression &
manage-ment of concurrency
and data

● Hardware
— Millions of cores with deep

memory hierarchy
— Power constraints
— Resiliency

6

O(1) programmers
O(10,000) nodes
O(100,000) processors
O(100,000,000) threads
and growing

●Growing intrinsic complexity of problem
●Complexity kills … sequential or parallel

▬ Expressing concurrency at extreme scale
▬ Managing the memory hierarchy

●Semantic gap (Colella)
▬ Why are our equations are O(100) lines but the

program is O(1M) & growing
▬ What’s in the semantic gap – and how to shrink it?

7

Wish list
● Eliminate gulf between theoretical innovation in

small groups and realization on high-end computers
● Eliminate the semantic gap so that efficient parallel

code is no harder than doing the math
● Enable performance-portable “code” that can be

automatically migrated to future architectures
● Reduce cost at all points in the life cycle

● Much of this is pipe dream – but what can we
aspire to?

8

Scientific vs. WWW software
● Why are we not experiencing the same nearly

exponential growth in functionality?
▬ Level of investment or number of developers?
▬ Lack of software interoperability and standards?
▬ Competition not cooperation between groups?
▬ Shifting scientific objectives?
▬ Our problems are intrinsically harder?
▬ Failure to embrace/develop higher levels for

composing applications?
▬ Differing impact of hardware complexity?

How do we write code for a
machine that does not yet exist?

● Nothing too exotic, e.g., the mix of SIMD and scalar
units, registers, massive multi-threading,
software/hardware managed cache, fast/slow &
local/remote memory that we expect in 2018+

● Answer 1: presently cannot
▬ but it’s imperative that we learn how and deploy the

necessary tools
● Answer 2: don’t even try!

▬ where possible generate code from high level
specifications

▬ provides tremendous agility and freedom to explore
diverse architectures

Conventional solution
 Problem statement + brain

→ algorithm

 Algorithm + language + brain
→ program

 Compile program

→ executable

 Computer + executable + input
→ result

 The brain is
 Expensive

 Finite

 Not growing exponentially

Image from http://www.ucdmc.ucdavis.edu/welcome/features/20071017_Medicine_whitematter/Photos/head_and_brain.jpg

The only step currently
employing HPC in most
applications

Cost perspectives
 250,000 processors running for 12 hours

 342 processor years

 Devoting 1+% of runtime resources to load balance
and scheduling is quite reasonable

 2,500+ processors

 Similarly for transformation, generation, compilation
 3.42+ year cpu time

 What additional transformations are possible?

 What wall time is acceptable?

 There is no parallel compiler – “heal thyself?”

12

Dead code
● Requires human labor

▬ to migrate to future
architectures, or

▬ to exploit additional
concurrency, or

▬ ...
● By these criteria most

extant code is dead
● Sanity check

▬ How much effort is
required to port to hybrid cpu+GPGPU?

7 December 1969

13

The language of
many-body physics

14

CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}]

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}]
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}]
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,b,d]*v[k,a,c,d],
{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -sum[t[j,k,c,b]*v[k,a,c,i],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -sum[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}]
-sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -sum[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}]
-sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -sum[t[i,k,c,b]*v[k,a,j,c],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}]
+2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}]
-sum[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -sum[t[i,k,c,a]*v[k,b,c,j],{k,c}]
+2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}]
-sum[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] +sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}]
+sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}]
+4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],
{k,l,c,d}] +sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],
{k,l,c}] +sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}]
-2*sum[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}]
+sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] +sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}]
-2*sum[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] +sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}]
+sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}]
+sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}]
-2*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],
{k,l,c,d}] +sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],
{k,l}] +sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],
{k,l,c,d}] +sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],
{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] +sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}]
+v[a,b,i,j]

h i j
ab

=〈a b
i j∣e− T 1−

T 2 H e
T 1

T 2∣0〉

15

The Tensor Contraction
Engine:

A Tool for Quantum Chemistry
Oak Ridge National
Laboratory

David E. Bernholdt,
Venkatesh Choppella, Robert
Harrison

Pacific Northwest National
Laboratory

So Hirata

Louisiana State University
J Ramanujam,

Ohio State University
Gerald Baumgartner, Alina
Bibireata, Daniel Cociorva,
Xiaoyang Gao, Sriram
Krishnamoorthy, Sandhya
Krishnan, Chi-Chung Lam,
Quingda Lu, Russell M.
Pitzer, P Sadayappan,
Alexander Sibiryakov

University of Waterloo
Marcel Nooijen, Alexander
Auer

Research at ORNL supported by the Laboratory Directed Research and Development Program. Research at PNNL supported by the Office of Basic Energy
Sciences, U. S. Dept. of Energy. Research at OSU, Waterloo, and LSU supported by the National Science Foundation Information Technology Research Program

http://www.cis.ohio-state.edu/~gb/TCE/

16

TCE Components
• Algebraic Transformations

– Minimize operation count

• Memory Minimization
– Reduce intermediate storage

via loop fusion (LCPC’03)

• Space-Time Transformation
– Trade-offs between storage

and recomputation (PLDI’02)

• Data Locality Optimization
– Optimize use of storage

hierarchy via tiling (ICS’01,
HiPC’03, IPDPS’04)

• Data Dist./Comm. Optimization
– Optimize parallel data layout

(IPDPS’03)
• Integrated System

▬ (SuperComputing’02,
Proc. IEEE 05)

Tensor Expressions

Algebraic
Transformations

Memory
Minimization

Performance
Model

System
Memory

Specification

Software
Developer

Data Distribution
and Partitioning

Parallel Code
Fortran/C/…

OpenMP/MPI/Global Arrays

Sequence of Matrix Products
Element-wise Matrix Operations

Element-wise Function Eval.

Space-Time
Trade-Offs

Storage and Data
Locality Management

No sol’n fits disk Sol’n fits disk, not mem.Sol’n fits mem.

Sol’n fits mem.

No sol’n fits disk

Tensor Contraction Engine (TCE)
(Kowalski, PNNL)

Highly parallel codes are needed in order to
apply the CC theories to larger molecular
systems

Symbolic algebra systems for coding
complicated tensor expressions: Tensor
Contraction Engine (TCE)

Triples part of CR-EOMCCSD(T) for
P1B1-f-coronene in Ahlrichs-VTZ
basis (786 functions). Timings on
Jaguar Cray-XT5 computer at
ORNL.

Parallel performance
(Karwolski et al., PNNL)

Towards future computer
architectures
(Villa,Krishnamoorthy, Kowalski)

 sp
e
e
d

u
p

The CCSD(T)/Reg-CCSD(T) codes have been rewritten in
order to take advantage of GPGPU accelerators
Preliminary tests show very good scalability of the most
expensive N7 part of the CCSD(T) approach

20

Python vs. Java
● The initial Python prototype

written by chemists works
but has lots of “issues” with
memory, speed, ...

● The OSU TCE generated
better code, respected
bounds on memory use,
but was written in Java by
C/S graduate students

● And none of the chemists
have a clue how it works and
none of them know Java

● Guess which is in use

Other challenges for comp. chem.
Robust and power efficient algorithms for one-body Schrodinger – O(105) LOC

Background: Density functional theory in atomic orbitals, block-sparse trees with fast summation
Science objective: Run at scaling limit for thermodynamic integration of energy-related materials
Issues: Interconnect, power, resilience, scaling, numerical robustness, at scaling limit data motion
dominates, irregular and small non-square matrices

Efficient and resilient algorithms to evaluate two-electron integrals – O(105) LOC
Background: Multiple algorithms – recursion, special functions, quadrature; near min.op. algorithms
obtain ~40% peak on x86-64, but no satisfactory solution yet on current accelerators
Science objective: Increased accuracy and speed, more types of bases and integral
Issues: CPU/memory architecture, resilience, power, optimal algorithm hard to find (graph search)

21

Quantum locality can be exploited for data- and load-balancing via space-filling
curves, from atoms (A-B) through matrices (C) to the product space (D).

22

23

Multiresolution Adaptive
Numerical Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2,
Rebecca Hartman-Baker1, Judy Hill1, Jun Jia1,

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

in collaboration with

Gregory Beylkin4, Lucas Monzon4,
Martin Mohlenkamp5, and Hideo Sekino6

4University of Colorado
5Ohio University

6Toyohashi Technical University, Japan

harrisonrj@ornl.gov

24

Funding
• MADNESS started as a DOE SciDAC project and the majority of its

support still comes from the DOE
• DOE SciDAC, divisions of Advanced Scientific Computing Research

and Basic Energy Science, under contract DE-AC05-00OR22725
with Oak Ridge National Laboratory, in part using the National
Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language evaluation
• NSF CHE 0625598: Cyber-infrastructure and Research Facilities:

Chemical Computations on Future High-end Computers
• NSF CNS-0509410: CAS-AES: An integrated framework for

compile-time/run-time support for multi-scale applications on high-
end systems

• NSF OCI-0904972: Computational chemistry and physics beyond
the petascale

25

What is MADNESS?

• A general purpose numerical environment for
reliable and fast scientific simulation
– Applications already in nuclear physics, chemistry,

atomic physics, material science, with investigations
beginning in climate and fusion.

• A general purpose parallel programming
environment designed for the petascale
– Standard C++ with concepts from Cilk, Charm++, HPCS

languages, with a multi-threaded runtime that
dynamically manages task dependences, scheduling and
provides global data view.

– Compatible by design with existing applications

26

Ariana Beste Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill
George Fann

Paul Sutter
Matt Reuter

Alvaro Vasquez

Jun Jia
Tetsuya Kato
Justus Calvin
J. Pei

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

27

Why MADNESS
• MADNESS

– Reduces S/W complexity since programmer not
responsible for managing dependencies,
scheduling, or placement

– Reduces S/W complexity through MATLAB-like
level of composition of scientific problems with
guaranteed speed and precision

– Reduces numerical complexity by enabling
solution of integral instead of differential
equations

– Framework makes latest techniques in applied
math and physics available to wide audience

28

The math behind the MADNESS

• Discontinuous spectral element basis
– High-order convergence ideally suited for modern

computer technology

• Multi-resolution analysis for fast algorithms
– Sparse representation of many integral operators
– Precision guaranteed through adaptive refinement

• Separated representations of operators and
functions
– Enable efficient computation in many dimensions

Essential techniques for fast
computation

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯V n−V n−1

f x1, ,xn =∑
l=1

M

σ l∏
i=1

d

f i
 l x i +O ε

∥ f i
 l
∥2=1 σ l0

A=∑
μ=1

r

u μ σ μ v μ
T +O ε

σ μ0 v μ
T v λ=u μ

T u λ=δ μν

30

Integral Formulation
●Solving the integral equation

▬ Eliminates the derivative operator and related “issues”
▬ Converges as fixed point iteration with no preconditioner

()
()

()

()

21
2

12

2

2 2

2 *

* () () in 3D ; 2
4

k r s

V E

E V

G V

e
G f r ds f s k E

r sπ

−

− −

− ∇ + Ψ = Ψ

Ψ = − −∇ − Ψ

= − Ψ

= = −
−∫

Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.

31

High-level composition
• Close to the physics

operatorT G = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(G(rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

 functionT dpsi = diff(psi,axis);

 ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈∣−
1
2

∇
2
V∣ 〉〈∣ 〉

32

H atom
Energy

33

H atom actual source
Let
 Omega = [-20, 20]^3
 r = x -> sqrt(x_0^2 + x_1^2 + x_2^2)
 g = x -> exp(-r(x))
 v = x -> -r(x)^-1
In
 psi = F g
 nu = F v
 S = < psi | psi >
 V = < psi | nu * psi >
 T = 1/2 * sum_i=0^2 < del_i psi | del_i psi >
 print S, V, T, (T + V)/S
End

34

He atom
Hylleraas

2-term
6D

35

He atom
Hartree-

Fock

36

Hartree-Fock

● What I really wanted to type was

● But had to
▬ Provide E (or rather dE/dφ)
▬ Describe inexact-Newton algorithm with stopping criterion
▬ Transform to integral representation for efficiency and accuracy

● Can automate some steps, c.f. Maple, Mathematica
▬ But properties of computation in the underlying basis are

crucial for accuracy and efficiency

min

E [] s.t. ∥∥2=1

37

Runtime Objectives
● Scalability to 1+M processors ASAP
● Runtime responsible for

● scheduling and placement, managing data
dependencies, hiding latency, and medium to
coarse grain concurrency

● Compatible with existing models
● MPI, Global Arrays

● Borrow successful concepts from Cilk,
Charm++, Python

● Anticipating next gen. languages

38

Key elements

● Futures for hiding latency and
automating dependency management

● Global names and name spaces
● Non-process centric computing

● One-sided messaging between objects
● Retain place=process for MPI/GA legacy

● Dynamic load balancing
● Data redistribution, work stealing, randomization

39

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs

● Hide latency due
to communication
or computation

● Management of
dependencies
– Via callbacks

int f(int arg);

ProcessId me, p;

Future<int> r0=task(p, f, 0);

Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

40

Global Names

● Objects with global
names with different
state in each process
– C.f. shared[threads]

in UPC; co-Array

● Non-collective
constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>{

int f(int);

};

ProcessID p;

A a;

Future<int> b = a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

41

Global Namespaces
● Specialize global names to

containers
– Hash table done
– Arrays, etc., planned

● Replace global pointer
(process+local pointer)
with more powerful
concept

●

● User definable map from
keys to “owner” process

class Index; // Hashable

class Value {

double f(int);

};

WorldContainer<Index,Value> c;

Index i,j; Value v;

c.insert(i,v);

Future<double> r =
c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

42

apply(op,input)
 for each node in input
 for each neighbor
 if norm estimate > tol
 output[neighbor] += compute result
 return output

reconstruct(node,coeffs)
 coeffs=unfilter(coeffs)
 for each child
 reconstruct(child,coeffs[child])

Example algorithms
compress(node)
 for each child
 coeffs[child]=compress(child)
 return filter(coeffs)

diff(node,left,right)
 if left & node & right have coeff
 result[node] = stencil ...
 coeffs = unfilter(coeffs)
 for each child
 diff(child,child.left,child.right)
 result[node] = empty

multiply(node,left,right)
 if (left & right have coeff) & accurate enuf
 result[node]= left * right
 lc,rc=unfilter(left),unfilter(right)
 for each child

 multiply(child,lc[child],rc[child])
 result[node] = empty

43

Near term objectives
● Separate specification of

▬ intent
▬ algorithm
▬ implementation

● Input form unclear – declarative, imperative, ...
● Generate code for multiple targets

▬ Current task-based runtime
▬ Map-reduce-like interface (with Cooperman, NEU)

● aggregation, more amenable to accelerators

● Couple code generation with perf./power model
● Additional coarse grain concurrency

▬ More intelligent runtime scheduling and placement

44

Summary
● We need radical changes in how we

compose scientific S/W
− Complexity at limits of cost

and human ability
● DSLs are part of this change

− Hard part is transformation not translation
− Need reusable infrastructure and tools

● ~10% of NWChem functionality machine
currently machine generated

− Aiming for at least 60% in about 5 years
− Don’t know how to do most of this, yet

