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  Simulation Based Engineering Workflow 
  PUMI 
 Geometric Model 
 Mesh 
 Parallel Control 

  ParMA 
 Multi-criteria Partition Improvement 
 PHASTA – Strong scaling 
 Predictive Load Balancing 

  Closing Remarks 
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Geometric Model 
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  Non-manifold Representation 
 Topological representation 

of any combination of 
volumes, surfaces, curves, 
and points 

  Geometric information 
 Solid Modeling Kernels 
 Coordinates on surface 
 Tolerance 

  Topological information 
 Entity adjacency 

  Shape information 
 CAD geometry 
 Mesh models 
 Image data 



Mesh - Representation 
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  Mesh entities: 
  vertex (0D), edge (1D), face (2D), or region (3D) 

  Adjacencies:  
  How the mesh entities connect to each other 
  Complete representation: store sufficient entities and  

adjacencies to get any adjacency in O(1) time 
  Geometric classification:  
  A relation that each mesh entity maintains to a  

geometric model entity 
  Entity set:  
  Mechanism for grouping mesh entities 

  Tag:  
  Mechanism to attach arbitrary user data (tag data) to a  

part, entity set or mesh entity 

Regions"

Faces"

Vertices"

Edges"



Mesh - Distribution 
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 Mesh partition defines parallel decomposition of applications. 
 Mesh partitioning representation in topology for efficient mesh-

based parallel operation support.   
 Partition model: a conceptual model existing between a 

geometric model and distributed mesh 
 Partition model entity: a topological entity in the partition 

model, Pi
d, representing a group of mesh entities of dimension 

d with the same residence parts. 

Partition classification in arrows Partition model entities 



Mesh - Distribution 
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Part 
 A unit of the mesh distribution 
 Each part Pi assigned to a process 
 Uniquely identified at part level by handle or id 
 Consists of mesh entities assigned to ith part. 
 Treated as a serial mesh with the  

addition of part boundaries  
 Part boundary: groups of mesh  

entities common to multiple  
parts 

 Part boundary entity: duplicated  
entities on all parts for which they  
bound higher order mesh entities 

 Remote copy: entity copy in  
another part  
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Mesh - Multiple Parts Per Process 
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  Purpose 
  Supports changing number of parts 
  Dealing with problems with current graph-based partitioners on really large 

numbers of processors  
  Architecture-aware two-level mesh partitioning  

  Multiple-Parts Per Process contained in Mesh Instance 
  For effective manipulation, a mesh instance defined on each process 

contains part handles assigned to the process 

A 3D mesh in 4 parts per process (16 parts total) 

4 parts 1 process 

Different color 
represents 

different part 

Different color 
represents 

different process 



Mesh - Two-Level Partitioning 
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  Exploit hybrid architecture of BG/Q, Cray XE6, etc… 
 Reduced memory usage 

  Approach 
 Partition mesh to processes, then partition to Pthreads 
 Message passing, via MPI,  

between processes 
 Shared memory, via Pthreads,  

within process 
 Transparent-to-application use of  

Pthreads 

Process 1 
Process 2 

Process 3 

Process 4 

pthreads"

pthreads"

Pa
rt"

pthreads"
Pi"

pthreads"

i!M"0!

j!M1!

1!P"

0!P" 2!P"

 intra-process part  
boundary!

Process j!Process i!

 inter-process part  
boundary!



Mesh - Two-Level Partitioning 
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  Entity is created at most once per process 
 Part boundary entity is created at most once per process 
 Part boundary entity on process i is shared by all  

on-process residence parts 
 Only owning part can modify entity 

(no race condition guaranteed) 
 Remote copy: entity copy on  

another process 
 Parallel control utility provides  

architecture info to mesh,  
then the mesh is distributed   
accordingly. 

* Authors thanks to Micah Corah and Ian Dunn (Dept. of Computer Science, 
RPI) for development and testing on RPI BG/Q. !
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Parallel Control  
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Message Passing abstraction 
 size, rank, send, receive 

Present 
 Architecture info collection via HWLOC* 

 Communication rounds for termination detection 
 Local - Fixed neighborhoods 
 Global - Unknown neighborhoods 

In Progress 
 Hybrid MPI/Pthread communications 

 Hybrid rank = (MPI rank)*(#Pthread per process) + thread rank 
 Hybrid send/receive 

 Pthread management – create, run, and join 

  * Portable Hardware Locality (http://www.open-mpi.org/projects/hwloc/) 



Mesh Partitioning 
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   Parallel simulation requires that the mesh be distributed with 
equal work-load and minimum inter-part communications 

   Observations on graph-based dynamic balancing 
 Parallel construction and balancing of graph with small cuts takes 

reasonable time 
 Graph/hyper-graph partitions are powerful for unstructured meshes, 

however they use one order (as in 0,1,2,3) of mesh entity as the 
graph nodes, hence the balance of other mesh entities may not be 
optimal 

  Accounting for multiple criteria and or multiple interactions is not obvious 
 Hypergraphs allows edges to connect more that two vertices – has 

been used to help account for migration communication costs 
 Schloegel and Karypis (2002) discuss an effective optimization 

method for three, or fewer, constraints 



Partitioning using Mesh Adjacencies (ParMA) 
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  Mesh adjacencies represent application data more completely 
then standard graph-partitioning models. 
  All mesh entities can be considered, while graph-partitioning models use 

only a subset of mesh adjacency information. 
  Any adjacency can be obtained in O(1) time (assuming use of a complete 

mesh adjacency structure). 

  Advantages 
  Avoid graph construction (assuming you have complete  

representation) 
  Directly account for multiple entity types – important for  

the solve process - typically the most computationally  
expensive step 

  Easy to use with diffusive procedures 

  Disadvantage 
  Lack of well developed algorithms for more global parallel partitioning 

operations directly from mesh adjacencies 

Regions"

Faces"

Vertices"

Edges"



ParMA – Multi-Criteria Partition Improvement 
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   Improve scaling of applications by reducing imbalances 
through exchange of mesh regions between 
neighboring parts 
 Current algorithm focused on improved scalability of the solve 

by accounting for balance of multiple entity types 
 Imbalance is limited to a small number of heavily loaded parts, referred 

to as spikes, which limit the scalability of applications 
 Application defined priority list of entity types such that imbalance of 

high priority types is not increased when balancing lower priority types 
 Similar approaches can be used to: 

 Improve balance during mesh adaptation – likely want extensions past 
diffusive methods   

 Supporting Two-level partitioning – heterogeneous resources 



ParMA – Multi-Criteria Partition Improvement 
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  Input: 
 Priority list of mesh entity types to be balanced (region, face, edge, 

vertex)  
 Partitioned mesh with complete representation and communication, 

computation and migration weights for each entity 
  Algorithm: 
  From high to low priority if separated by ‘>’ (different groups) 

 From low to high dimension entity types if separated by ‘=’ (same group) 
  Compute migration schedule (Collective) 
  Select regions for migration (Embarrassingly Parallel) 
  Migrate selected regions (Collective) 

Ex) “Rgn>Face=Edge>Vtx” is the user’s input  
Step 1: improve balance for mesh regions 
Step 2.1: improve balance for mesh edges 
Step 2.2: improve balance for mesh faces 
Step 3: improve balance for mesh vertices 

Mesh element selection 



ParMA – Multi-Criteria Partition Improvement (Zhou)  
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PHASTA - Strong Scaling (K. Jansen) 
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  AAA 5B elements: 288k Cores on JUGENE IBM BG/P  
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  ParMA	
  strong	
  scaling	
  factor	
  is	
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120 parts with ~30% of 
the average load "

~20 parts with > 200% 
imbalance, peak 

imbalance is ~430%"

ParMA – Predictive Load Balancing 
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  Parallel unstructured mesh adaptation typically generate parts 
with 400% or more imbalance on non-trivial geometries due to 
local coarsening & refinement. 
  Refining then repartitioning can exceed 
available memory in some processes,  
even if the system’s total memory is  
sufficient. 
  Solution: Redistribute mesh before adapting 
 Merge parts that will be coarsened  

to create some empty parts. 
 Split parts with substantial refinement  

into the empty parts to remove  
imbalance spikes of refined mesh. 

 Refine/coarsen the mesh. 
 Apply ParMA’s diffusive partition improvement 

Histogram of element 
imbalance in 1024 part 

adapted mesh on Onera M6 
wing if no load balancing is 
applied prior to adaptation."



Closing Remarks 

Research Contributions 
 Parallel mesh data structure with all needed mesh-level 

operations for adaptive simulations on a massively parallel 
computers 

Future Directions 
 Architecture-awareness: node-socket-core-processing unit 
 Identifying optimal granularity and major h/w factors for max. 

scalability 
 Interaction with other threaded/non-threaded parallel library 
 Two-level partitioning with ParMA 

More Information Online 
 PUMI: http://www.scorec.rpi.edu/FMDB/ 
 ParMA: http://redmine.scorec.rpi.edu/projects/parma 
 SCOREC: http://www.scorec.rpi.edu 
 FASTMath: http://www.fastmath-scidac.org 

20 



Thank You 

21 

For More Information Contact: "
smithc11@rpi.edu "

WOLFHPC 2012!


