
A Parallel Unstructured Mesh Infrastructure

  Seegyoung Seol, Cameron Smith,
Daniel Ibanez, Mark S. Shephard

  Scientific Computation Research Center
Rensselaer Polytechnic Institute

WOLFHPC 2012
Second International Workshop on Domain-Specific Languages and

High-Level Frameworks for High Performance Computing
November 16, 2012

Outline

2

  Simulation Based Engineering Workflow
  PUMI
 Geometric Model
 Mesh
 Parallel Control

  ParMA
 Multi-criteria Partition Improvement
 PHASTA – Strong scaling
 Predictive Load Balancing

  Closing Remarks

Simulation Based Engineering Workflow

3

Problem "
Definition"

Mesh "
Generation"

PDE 
Analysis"

Adaptation"
Post "

Processing"

Partition model!Geometric model!

PUMI

4

Fields  
distribution of solution

over mesh"

Mesh!

analysis domain"

0-3D topological entities
and adjacencies"

distribution of
mesh across"
computing
resources Parallel Control 

communication utilities"

Geometric Model

5

  Non-manifold Representation
 Topological representation

of any combination of
volumes, surfaces, curves,
and points

  Geometric information
 Solid Modeling Kernels
 Coordinates on surface
 Tolerance

  Topological information
 Entity adjacency

  Shape information
 CAD geometry
 Mesh models
 Image data

Mesh - Representation

6

  Mesh entities:
  vertex (0D), edge (1D), face (2D), or region (3D)

  Adjacencies:
  How the mesh entities connect to each other
  Complete representation: store sufficient entities and

adjacencies to get any adjacency in O(1) time
  Geometric classification:
  A relation that each mesh entity maintains to a

geometric model entity
  Entity set:
  Mechanism for grouping mesh entities

  Tag:
  Mechanism to attach arbitrary user data (tag data) to a

part, entity set or mesh entity

Regions"

Faces"

Vertices"

Edges"

Mesh - Distribution

7

 Mesh partition defines parallel decomposition of applications.
 Mesh partitioning representation in topology for efficient mesh-

based parallel operation support.
 Partition model: a conceptual model existing between a

geometric model and distributed mesh
 Partition model entity: a topological entity in the partition

model, Pi
d, representing a group of mesh entities of dimension

d with the same residence parts.

Partition classification in arrows Partition model entities

Mesh - Distribution

8

Part
 A unit of the mesh distribution
 Each part Pi assigned to a process
 Uniquely identified at part level by handle or id
 Consists of mesh entities assigned to ith part.
 Treated as a serial mesh with the

addition of part boundaries
 Part boundary: groups of mesh

entities common to multiple
parts

 Part boundary entity: duplicated
entities on all parts for which they
bound higher order mesh entities

 Remote copy: entity copy in
another part

i!M"0!

j!M1!

1!P"

0!P"
2!P"

 inter-process part
boundary!

 intra-process part
boundary!

 Process j! Process i!

Mesh - Multiple Parts Per Process

9

  Purpose
  Supports changing number of parts
  Dealing with problems with current graph-based partitioners on really large

numbers of processors
  Architecture-aware two-level mesh partitioning

  Multiple-Parts Per Process contained in Mesh Instance
  For effective manipulation, a mesh instance defined on each process

contains part handles assigned to the process

A 3D mesh in 4 parts per process (16 parts total)

4 parts 1 process

Different color
represents

different part

Different color
represents

different process

Mesh - Two-Level Partitioning

10

  Exploit hybrid architecture of BG/Q, Cray XE6, etc…
 Reduced memory usage

  Approach
 Partition mesh to processes, then partition to Pthreads
 Message passing, via MPI,

between processes
 Shared memory, via Pthreads,

within process
 Transparent-to-application use of

Pthreads

Process 1
Process 2

Process 3

Process 4

pthreads"

pthreads"

Pa
rt"

pthreads"
Pi"

pthreads"

i!M"0!

j!M1!

1!P"

0!P" 2!P"

 intra-process part
boundary!

Process j!Process i!

 inter-process part
boundary!

Mesh - Two-Level Partitioning

11

  Entity is created at most once per process
 Part boundary entity is created at most once per process
 Part boundary entity on process i is shared by all

on-process residence parts
 Only owning part can modify entity

(no race condition guaranteed)
 Remote copy: entity copy on

another process
 Parallel control utility provides

architecture info to mesh,
then the mesh is distributed
accordingly.

* Authors thanks to Micah Corah and Ian Dunn (Dept. of Computer Science,
RPI) for development and testing on RPI BG/Q. !

i!M"0!

j!M1!

1!P"

0!P" 2!P"

 intra-process part
boundary!

Process j!Process i!

 inter-process part
boundary!

Parallel Control

12

Message Passing abstraction
 size, rank, send, receive

Present
 Architecture info collection via HWLOC*

 Communication rounds for termination detection
 Local - Fixed neighborhoods
 Global - Unknown neighborhoods

In Progress
 Hybrid MPI/Pthread communications

 Hybrid rank = (MPI rank)*(#Pthread per process) + thread rank
 Hybrid send/receive

 Pthread management – create, run, and join

  * Portable Hardware Locality (http://www.open-mpi.org/projects/hwloc/)

Mesh Partitioning

13

   Parallel simulation requires that the mesh be distributed with
equal work-load and minimum inter-part communications

   Observations on graph-based dynamic balancing
 Parallel construction and balancing of graph with small cuts takes

reasonable time
 Graph/hyper-graph partitions are powerful for unstructured meshes,

however they use one order (as in 0,1,2,3) of mesh entity as the
graph nodes, hence the balance of other mesh entities may not be
optimal

  Accounting for multiple criteria and or multiple interactions is not obvious
 Hypergraphs allows edges to connect more that two vertices – has

been used to help account for migration communication costs
 Schloegel and Karypis (2002) discuss an effective optimization

method for three, or fewer, constraints

Partitioning using Mesh Adjacencies (ParMA)

14

  Mesh adjacencies represent application data more completely
then standard graph-partitioning models.
  All mesh entities can be considered, while graph-partitioning models use

only a subset of mesh adjacency information.
  Any adjacency can be obtained in O(1) time (assuming use of a complete

mesh adjacency structure).

  Advantages
  Avoid graph construction (assuming you have complete

representation)
  Directly account for multiple entity types – important for

the solve process - typically the most computationally
expensive step

  Easy to use with diffusive procedures

  Disadvantage
  Lack of well developed algorithms for more global parallel partitioning

operations directly from mesh adjacencies

Regions"

Faces"

Vertices"

Edges"

ParMA – Multi-Criteria Partition Improvement

15

   Improve scaling of applications by reducing imbalances
through exchange of mesh regions between
neighboring parts
 Current algorithm focused on improved scalability of the solve

by accounting for balance of multiple entity types
 Imbalance is limited to a small number of heavily loaded parts, referred

to as spikes, which limit the scalability of applications
 Application defined priority list of entity types such that imbalance of

high priority types is not increased when balancing lower priority types
 Similar approaches can be used to:

 Improve balance during mesh adaptation – likely want extensions past
diffusive methods

 Supporting Two-level partitioning – heterogeneous resources

ParMA – Multi-Criteria Partition Improvement

16

  Input:
 Priority list of mesh entity types to be balanced (region, face, edge,

vertex)
 Partitioned mesh with complete representation and communication,

computation and migration weights for each entity
  Algorithm:
  From high to low priority if separated by ‘>’ (different groups)

 From low to high dimension entity types if separated by ‘=’ (same group)
  Compute migration schedule (Collective)
  Select regions for migration (Embarrassingly Parallel)
  Migrate selected regions (Collective)

Ex) “Rgn>Face=Edge>Vtx” is the user’s input
Step 1: improve balance for mesh regions
Step 2.1: improve balance for mesh edges
Step 2.2: improve balance for mesh faces
Step 3: improve balance for mesh vertices

Mesh element selection

ParMA – Multi-Criteria Partition Improvement (Zhou)

17

133M	
 region	
 mesh	
 on	
 16k	
 parts	
 Table	
 2:Balance	
 of	
 par;;ons	

Table	
 3:	
 Time	
 usage	
 and	
 itera;ons	
 (tests	
 on	
 Jaguar	
 Cray	
 XT5	
 system)	

Table	
 1:Tests	

PHASTA - Strong Scaling (K. Jansen)

18

  AAA 5B elements: 288k Cores on JUGENE IBM BG/P

without	
 ParMA	
 strong	
 scaling	
 factor	
 is	

0.88	
 (4me	
 is	
 70.5	
 secs),	

for	
 produc4on	
 runs	
 savings	
 can	
 be	
 in	
 43	
 cpu-­‐years	

120 parts with ~30% of
the average load "

~20 parts with > 200%
imbalance, peak

imbalance is ~430%"

ParMA – Predictive Load Balancing

19

  Parallel unstructured mesh adaptation typically generate parts
with 400% or more imbalance on non-trivial geometries due to
local coarsening & refinement.
  Refining then repartitioning can exceed
available memory in some processes,
even if the system’s total memory is
sufficient.
  Solution: Redistribute mesh before adapting
 Merge parts that will be coarsened

to create some empty parts.
 Split parts with substantial refinement

into the empty parts to remove
imbalance spikes of refined mesh.

 Refine/coarsen the mesh.
 Apply ParMA’s diffusive partition improvement

Histogram of element
imbalance in 1024 part

adapted mesh on Onera M6
wing if no load balancing is
applied prior to adaptation."

Closing Remarks

Research Contributions
 Parallel mesh data structure with all needed mesh-level

operations for adaptive simulations on a massively parallel
computers

Future Directions
 Architecture-awareness: node-socket-core-processing unit
 Identifying optimal granularity and major h/w factors for max.

scalability
 Interaction with other threaded/non-threaded parallel library
 Two-level partitioning with ParMA

More Information Online
 PUMI: http://www.scorec.rpi.edu/FMDB/
 ParMA: http://redmine.scorec.rpi.edu/projects/parma
 SCOREC: http://www.scorec.rpi.edu
 FASTMath: http://www.fastmath-scidac.org

20

Thank You

21

For More Information Contact: "
smithc11@rpi.edu "

WOLFHPC 2012!

