
What	 Parallel	 HLLs	 Need	

Laxmikant	 (Sanjay)	 Kale	
h:p://charm.cs.illinois.edu	

Raising the Level of Abstraction
•  Since parallel programming is challenging

–  Yes, admit it
•  We need to increase productivity

–  Automating commonly needed functions
–  Raising the level of abstraction with Higher Level

Programming Paradigms/Systems (HLS)
•  HLPS:

–  What kinds of HLPS?

11/18/13 WOLFHPC2013 2

High Level Programming Systems
•  Different ways of attaining “higher level”

–  Global view of data
–  Global view of control
–  Both
–  Simplified or specialized syntax
–  Safety properties

•  But the largest benefit come from
specialization
–  Domain specific languages
–  Domain specific Frameworks
–  Interaction-pattern specific languages

11/18/13 WOLFHPC2013 3

What do all the HLPS need?
•  How can we facilitate development and use of

such HLPS?
•  Common Adaptive Runtime System

–  Resource management
–  Load balancing
–  Power energy and thermal optimization
–  Resilience, ..

•  Interoperability
–  Since some of our HLPS are specialized, they are not

“complete”
–  Have to interoperate with each other and with at least

one complete language
•  I will elaborate on these themes

11/18/13 WOLFHPC2013 4

Sanjay’s Central Dogma:
Overdecomposition

11/18/13 WOLFHPC2013 5

Overdecomposition is essential for
effective parallel programs, 	

for computer performance and 	

for human productivity	

What is overdecomposition?
•  Divide the computation into a large (but not

too large) number of coarse pieces
–  Making decomposition independent of number

of processors
•  Not too large:

–  Making decomposition depend on the overhead:
–  Just large enough to amortize the overhead

•  Express communication in terms of these
pieces
–  Never addressing “the processors”

•  At least in the pure model

11/18/13 WOLFHPC2013 6

Grainsize
•  Grainsize:

–  Rough definition: amount of computation per
interaction: communication/scheduling event

•  It is important to understand what I mean
by coarse-grained entities
–  You don’t write sequential programs that some

system will auto-decompose
–  You don’t write programs when there is one

object for each float
–  You consciously choose a grainsize, BUT choose

it independent of the number of processors
•  Or parameterize it, so you can tune later

11/18/13 WOLFHPC2013 7

11/18/13 WOLFHPC2013 8

Crack Propagation

Decomposition into 16 chunks (left) and 128 chunks, 8 for
each PE (right). The middle area contains cohesive elements.
Both decompositions obtained using Metis. Pictures: S.
Breitenfeld, and P. Geubelle

This is 2D, circa 2002…
but shows over-decomposition for unstructured meshes..

Grainsize example: NAMD
•  High Performing examples: (objects are the

work-data units in Charm++)
•  On Blue Waters, 100M atom simulation,

–  128K cores (4K nodes), 5,510,202 objects
•  Edison, Apoa1(92K atoms)

–  4K cores , 33124 objects
•  Hopper, STMV, 1M atoms,

–  15,360 cores, 430,612 objects

11/18/13 WOLFHPC2013 9

Grainsize: Weather Forecasting in BRAMS

11/18/13 WOLFHPC2013 10

•  Brams: Brazillian weather code (based on RAMS)
•  AMPI version (Eduardo Rodrigues, with Mendes , J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

11/18/13 WOLFHPC2013 11

Working definition of grainsize :
amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

Grainsize in a common setting

11/18/13 WOLFHPC2013 12

 1

 2

 4

128M32M8M2M512K64K16K4K

tim
es

te
p(

se
c)

number of points per chare

Jacobi3D running on JYC using 64 cores on 2 nodes

2048x2048x2048 (total problem size)

2 MB/chare,
256 objects per core

A 3D stencil computation

Restating: Over-decomposition
•  Programmers decompose a computation into entities

–  Work units, data-units, composites
–  Into coarse-grained set of objects
–  Independent of number of processors

•  The entities communicate with each other without
reference to processors
–  So each entity is like a virtual processor by itself

•  Let an intelligent runtime system assign these
entities to processors
–  RTS can change this assignment during execution
–  Migratibility! An essential feature

•  This empowers the control system
–  A large number of observables
–  Many control variables created

11/18/13 WOLFHPC2013 13

Sanjay’s Central Dogma

11/18/13 WOLFHPC2013 14

Overdecomposition is essential for
effective parallel programs, for

computer performance and for human
productivity	

Another sense in which this is my central dogma:
I and my research group have been exploring
this idea for almost 20 years now!

Adaptive Control Systems
•  To exercise adaptive control at runtime:

–  One needs a rich set of observables and control
variables

•  My group’s research over the past 15-20 years:
–  Can be thought of as a quest to add more

observables and control variables
–  Programming models, languages ,libraries, including:

•  Charm++, AMPI, Charisma, MSA, Charj,

•  Now, I’d like to consolidate the experience and
knowledge gained, and express it in a new
abstract programming model

11/18/13 WOLFHPC2013 15

XMAPP
•  XMAPP is an abstract programming model:

–  That means it characterizes a set of prog. models
•  For a programming model to belong to this set, it

must support
–  X: Overdecomposition

•  (as in: 8X objects than cores)
–  M: Migratability
–  A: Asynchrony

•  and Adaptivity, as a consequence of all the above
•  So, XMAPP stands for:

–  Overdecomposition-based Migratibility, Asynchrony and
Adaptivity in Parallel Programming

11/18/13 WOLFHPC2013 16

Members of XMAPP-class
•  The programming models in XMAPP, or exhibit some

features of it
–  Charm++
–  Adaptive MPI
–  KAAPI
–  ProActive
–  FG-MPI (if it adds migration)
–  HPX (once it embraces migratability)
–  ParSEC
–  CnC
–  MSA (multi-phase Shared arrays)
–  Charisma
–  Charj
–  DRMS (old abstraction from IBM research..)
–  Chapel: may be a higher level model
–  X10: has asynchrony, but not migratable units
–  Tascel

11/18/13 WOLFHPC2013 17

Also, general work on adaptivity
is relevant: Trilinos, Hank
Hoffman/UIC, …

HLPS and XMAPP
•  To be able to use powerful adaptive runtime

–  Either it must belong to XMAPP class
–  Or it should compile/translate to an XMAPP class

HLPS

11/18/13 WOLFHPC2013 18

Impact on communication

•  Current use of communication network:
–  Compute-communicate cycles in typical MPI apps
–  So, the network is used for a fraction of time,
–  and is on the critical path

•  So, current communication networks are over-
engineered for by necessity

11/18/13 WOLFHPC2013 19

P1

P2

BSP based application

Impact on communication
•  With overdecomposition

–  Communication is spread over an iteration
–  Also, adaptive overlap of communication and

computation

11/18/13 WOLFHPC2013 20

P1

P2

Overdecomposition enables overlap

Object-based over-decomposition: Charm++

11/18/13 WOLFHPC2013 21

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors

11/18/13 WOLFHPC2013 22

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

Note the control points created
•  Scheduling (sequencing) of multiple method

invocations waiting in scheduler’s queue
•  Observed variables: execution time, object

communication graph (who talks to whom)
•  Migration of objects

–  System can move them to different processors at
will, because..

•  This is already very rich…
–  What can we do with that??

11/18/13 WOLFHPC2013 23

Optimizations Enabled/Enhanced by
These New Control Variables

•  Communication optimization
•  Load balancing
•  Meta-balancer
•  Heterogeneous Load balancing
•  Power/temperature/energy optimizations
•  Resilience
•  Shrink/Expand sets of nodes
•  Application reconfiguration to add control

points
•  Adapting to memory capacity

11/18/13 WOLFHPC2013 24

11/18/13 WOLFHPC2013 25

XMAPP ideas and features
have been demonstrated in

full-scale production
Charm++ applications

NAMD: Biomolecular simulations

•  Collaboration with K.
Schulten

•  With over 45,000
registered users

•  Scaled to most top US
supercomputers

•  In production use on
supercomputers and
clusters and desktops

•  Gordon Bell award in
2002

11/18/13 WOLFHPC2013 26

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

11/18/13 WOLFHPC2013 27

With Charm++: use Oct-
Tree, and let Charm++ map
subtrees to processors

Evolution of Universe and
Galaxy Formation

11/18/13 WOLFHPC2013 28

Spread of Infection:
Agent-based Simulation

EpiSimdemics
Keith Bisset, Madhav Marathe

11/18/13 WOLFHPC2013 29

A just-published
book
surveys seven
major applications
developed using
Charm++

See booth#434
(CRC Press/
Taylor & Francis)

11/18/13 WOLFHPC2013 30

So, HLPS designers, IF you embrace
overdecomposition, very powerful adaptive
runtime techniques become feasible.

Moreover, these adaptive techniques are very
much essential in the coming era of complex
heterogenous and (yes) dynamic machines,
and sophisticated and dynamic applications

High Level Programming Systems
•  Different ways of attaining “higher level”

–  Global view of data
–  Global view of control
–  Both
–  Simplified or specialized syntax
–  Safety properties

•  But the largest benefits come from
specialization
–  Domain specific languages
–  Domain specific Frameworks
–  Interaction-pattern specific languages

11/18/13 WOLFHPC2013 31

MSA: Multiphase Shared Arrays
•  In the simple model:
•  A program consists of

–  A collection of Charm
threads, and

–  Multiple collections of
data-arrays

•  Partitioned into pages
(user-specified)

•  Each array is in one
mode at a time
–  But its mode may change

from phase to phase
•  Modes

–  Write-once
–  Read-only
–  Accumulate
–  Owner-computes

11/18/13 WOLFHPC2013 32

A
B

C C C C

Observations:
General shared address space
abstraction is complex
Certain special cases are simple,
and cover most uses

WOLFHPC2013

Charisma: Static Data Flow
Observation: many CSE applications or
modules involve static data flow in a
fixed network of entities

The amount of data may vary from
iteration to iteration, but who talks to
whom remains unchanged

11/18/13 33

l  Arrays of objects

l  Global parameter space

-  Objects read from and write
into it

l  Clean division between

-  Parallel (orchestration) code

-  Sequential methods

WOLFHPC2013

Charisma++ example (Simple)

while (e > threshold)
 forall i in J
 <+e, lb[i], rb[i]> := J[i].compute(rb[i-1],lb[i+1]);

11/18/13 34

A View of an Interoperable Future

11/18/13 WOLFHPC2013 35

X10

Interoperability
•  So far:

–  One can write an application in one of several
“languages”, and have it use the same ARTS

•  Interoperability requires
–  Allowing composing applications using modules

written in different HLPS
–  So that they co-exist efficiently
–  So that they can exchange control and data

uniformly
•  For this:

–  we have to look at how HLPSs view a “processor”
and how control transfers among program units

11/18/13 WOLFHPC2013 36

Implicit vs explict control transfer
•  Examples will illustrate this:

–  MPI (explicit): control transfer as directed by the
programmer

–  Charm++ (implicit): control transfers as dictated
by the message-driven scheduler at runtime

•  Interoperability and control transfer
regimes:
–  Within explicit HLPS (MPI/UPC/..)
–  Within implicit HLPS

•  Charm++/MSA/Charisma/.., all XMAPP HLPS
–  Across explicit and implicit HLPS

11/18/13 WOLFHPC2013 37

Explicit control transfer regime
•  The interoperation itself is relatively easy:

–  As long as a common low-level runtime is
agreed on, such as GASNET or Portals, …

•  Typically:
–  Boils down to using one of several

communication mechanisms
•  Send/recv, CAF style remote accesses, upc get/put

–  Still, leaves engineering issues to solve

11/18/13 WOLFHPC2013 38

WOLFHPC2013 39

Parallel Composition: A1; (B || C); A2

Recall: Different modules, written in different languages
or paradigms, can overlap in time and on processors,
without programmer having to worry about this explicitly

11/18/13

Implicit regimes support parallel composition

WOLFHPC2013

Without message-driven execution
(and virtualization), you get either:
Space-division

11/18/13 40

WOLFHPC2013

OR: Sequentialization

11/18/13 41

Data transfer across modules
•  For implicit regimes:

–  How to transfer data?
–  Programmer doesn’t know where the sender or

the receiver is (migratability)
–  Programmer doesn’t know how to address the

entities of the other module
•  Or else, we have libraries with L2 interfaces!

11/18/13 WOLFHPC2013 42

Data Transfer Solutions:
•  Use MSA as a common medium!

–  Module1 deposits in an MSA, module 2 picks up
data from MSA

–  MSA is then accepted as a common data transfer
protocol by all libraries

•  Use processor-level concentration
–  Deposit data to local processor
–  The other modules processor-level entities grab

the data and redistribute it as needed
–  May need extensions in the HLPS

•  Or use low-level escape valvle for this purpose

11/18/13 WOLFHPC2013 43

Mixing Implicit and Explicit control
•  Implicit HLPS have a message-driven

scheduler
–  Buried deep inside its runtime

•  The solution:
–  Expose the scheduler!
–  Make it a callable function

11/18/13 WOLFHPC2013 44

Charm++ interoperates with MPI

Charm++
Control

11/18/13 cs598LVK 45

Interoperability: Recent experience
•  Nikhil Jain extended Charm++ to facilitate

interoperable libraries

11/18/13 WOLFHPC2013 46

Is Interoperation Feasible in
Production Applications?

Application Library Productivity Performance

CHARM in MPI
(on Chombo)

HistSort in
Charm++

195 lines
removed

48x speed
up in Sorting

EpiSimdemics MPI IO Write to single
file

256x faster
input

NAMD FFTW 280 lines less Similar
performance

Charm++’s
Load Balancing

ParMETIS Parallel graph
partitioning

Faster
applications

11/18/13 WOLFHPC2013 47

Recap
•  High Level Programming Systems need:

–  A common adaptive runtime system as a base
•  Should generate migratable work/data units, at the

backend, to leverage most powerful runtime techniques
•  These necessitate implicit transfer of control

–  message-driven execution
–  Interoperation

•  Support and abstractions for interoperation and data-
exchange across multi-paradigm boundaries

•  Challenging when implicit-control modules are involved
•  Showed some techniques that are useful, but more are

needed
–  Message to HLPS developers:

•  Use an adaptive runtime system, such as Charm++, to
build upon

11/18/13 WOLFHPC2013 48

Recap
•  High Level Programming Systems need:

–  A common adaptive runtime system as a base
•  Should generate migratable work/data units, at the backend, to

leverage most powerful runtime techniques
•  These necessitate implicit transfer of control

–  message-driven execution
–  Interoperation

•  Support and abstractions for interoperation and data-exchange
across multi-paradigm boundaries

•  Challenging when implicit-control modules are involved
•  Showed some techniques that are useful, but more are needed

–  Message to HLPS developers:
•  Use an adaptive runtime system, such as Charm++, to build upon

11/18/13 WOLFHPC2013 49

More info on Charm++:
http://charm.cs.illinois.edu

See you at Charm++ BOF at
Tues 5:30-7:00, Rm 702-706

I am looking for a postdoc
and/or a research programmer

11/18/13 WOLFHPC2013 50

