What Parallel HLLs Need

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

‘ PARALLEL
jfliLoiNoOTs PROGRAMINIING A i

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Raising the Level of Abstraction

« Since parallel programming is challenging
— Yes, admit it
« We need to increase productivity

— Automating commonly needed functions

— Raising the level of abstraction with Higher Level
Programming Paradigms/Systems (HLS)

« HLPS:
— What kinds of HLPS?

PPL

UIUC

High Level Programming Systems

« Different ways of attaining “higher level”
— Global view of data
— Global view of control
— Both
— Simplified or specialized syntax
— Safety properties

« But the largest benefit come from
specialization
— Domain specific languages
— Domain specific Frameworks
— Interaction-pattern specific languages

PPL

UIUC

What do all the HLPS need?

How can we facilitate development and use of
such HLPS?

Common Adaptive Runtime System
— Resource management

— Load balancing

— Power energy and thermal optimization
— Resilience, ..

Interoperability

— Since some of our HLPS are specialized, they are not
“‘complete”

— Have to interoperate with each other and with at least
one complete language

| will elaborate on these themes

PPL

- UIUC

Sanjay’s Central Dogma:
Overdecomposition

Overa[ecomyosition is essentz’a[for
@j(ecu’ve Joamffef programs,
for computer Joe@(ormance and

j"or human Jorocfuctivity

PPL

UIUC

What is overdecomposition?

« Divide the computation into a large (but not
too large) number of coarse pieces

— Making decomposition independent of number
of processors

« Not too large:

— Making decomposition depend on the overhead:
— Just large enough to amortize the overhead

« Express communication in terms of these
pieces

— Never addressing “the processors”
« At least in the pure model

PPL

UIUC

Grainsize

« Grainsize:
— Rough definition: amount of computation per
interaction: communication/scheduling event
« It is important to understand what | mean
by coarse-grained entities

— You don’t write sequential programs that some
system will auto-decompose

— You don’t write programs when there is one
object for each float

— You consciously choose a grainsize, BUT choose
it independent of the number of processors

« Or parameterize it, so you can tune later

PPL

UIUC

Crack Propagation

This is 2D, circa 2002...
but shows over-decomposition for unstructured meshes..

SRS e A
Decomposition into 16 chunks (left) and 128 chunks, 8 for
each PE (right). The middle area contains cohesive elements.
Both decompositions obtained using Metis. Pictures: S.
Breitenfeld, and P. Geubelle

PPL

UIUC

Grainsize example: NAMD

High Performing examples: (objects are the
work-data units in Charm++)

On Blue Waters, 100M atom simulation,
— 128K cores (4K nodes), 5,510,202 objects

Edison, Apoal (92K atoms)
— 4K cores , 33124 objects

Hopper, STMV, 1M atoms,
— 15,360 cores, 430,612 objects

T PPL

UIUC

Grainsize: Weather Forecasting in BRAMS

« Brams: Brazillian weather code (based on RAMS)
« AMPI version (Eduardo Rodrigues, with Mendes , J. Panetta, ..)

Blll
IIIIIIID

Instead of using 64 work units on 64 cores, used 1024 on 64 PP

46 BraDS: OOLA/IGES

it UIUC

Working definition of grainsize :
amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

1 processor

Time

N /

P processors

Grainsize

Grainsize in a common setting

A 3D stencil computation

Jacobi3D running on JYC using 64 cores on 2 nodes

| 2048x2048x2048 (total problem size) ——
2 MB/chare,

VR SN VR — S e
. 256 objects per core
2
=
o
QE) D e W T — e ——

1 | | | | | |

4K 16K 64K 512K 2M 8M 32M 128M

number of points per chare

12

PPL

UIUC

Restating: Over-decomposition

Programmers decompose a computation into entities
— Work units, data-units, composites
— Into coarse-grained set of objects
— Independent of number of processors
* The entities communicate with each other without
reference to Processors
— So each entity is like a virtual processor by itself
« Let an intelligent runtime system assign these
entities to processors
— RTS can change this assignment during execution
— Migratibility! An essential feature
 This empowers the control system
— A large number of observables
— Many control variables created

T PPL

UIUC

Sanjay’s Central Dogma

Another sense in which this 1s my central dogma:
I and my research group have been exploring

this 1dea for almost 20 years now!

Overcfecom]oosition is essential for
eﬁtective Joam[fe[programs, for

COTYLJOUJL?T Jae@(ormance cma[for ﬁuman.,

fyrocfuctivity

Adaptive Control Systems

 To exercise adaptive control at runtime:
— One needs a rich set of observables and control
variables
« My group’s research over the past 15-20 years:

— Can be thought of as a quest to add more
observables and control variables

— Programming models, languages ,libraries, including:
« Charm++, AMPI, Charisma, MSA, Charj,
 Now, I'd like to consolidate the experience and
knowledge gained, and express it in a new
abstract programming model

PPL

L3 UIUC

XMAPP

« XMAPP is an abstract programming model:
— That means it characterizes a set of prog. models
 For a programming model to belong to this set, it
must support

— X: Overdecomposition
« (as in: 8X objects than cores)
— M: Migratability
— A: Asynchrony
« and Adaptivity, as a consequence of all the above

 So, XMAPP stands for:

— Overdecomposition-based Migratibility, Asynchrony and
Adaptivity in Parallel Programming

PPL

L UIUC

Members of XMAPP-class

 The programming models in XMAPP, or exhibit some
features of it

— Charm++

— Adaptive MPI Also, general work on adaptivity
— KAAPI is relevant: Trilinos, Hank

— ProActive Hoffman/UIC, ...

— FG-MPI (if it adds migration)

— HPX (once it embraces migratability)

— ParSEC

— CnC

— MSA (multi-phase Shared arrays)

— Charisma

— Charj

— DRMS (old abstraction from IBM research..)

— Chapel: may be a higher level model

— X10: has asynchrony, but not migratable units

— Tascel

T PPL
17 UIUC

HLPS and XMAPP

 To be able to use powerful adaptive runtime
— Either it must belong to XMAPP class

— Or it should compile/translate to an XMAPP class
HLPS

T PPL
18 UIUC

Impact on communication

e Current use of communication network:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

« So, current communication networks are over-
engineered for by necessity

BSP based application Q
19 N 4

Impact on communication

« With overdecomposition
— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

P ,

Overdecomposition enables overlap - J
20 0\/

Object-based over-decomposition: Charm++

« Multiple “indexed collections” of C++ objects

 Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

ha
-/E)Xi -@

USe]/‘ VieW -+

T PPL
21 UIUC

— |

u

.O D'\w\ DD
8 - = _ @ "

Processor | Frocessor 2
[T N [[T |

Message Queue Message Queue
—

] m
= UIUC

Note the control points created

« Scheduling (sequencing) of multiple method
invocations waiting in scheduler’s queue

« Observed variables: execution time, object
communication graph (who talks to whom)

« Migration of objects

— System can move them to different processors at
will, because..

« This is already very rich...
— What can we do with that??

T PPL
23 UIUC

Optimizations Enabled/Enhanced by
These New Control Variables

« Communication optimization

« Load balancing

 Meta-balancer

 Heterogeneous Load balancing
 Power/temperature/energy optimizations
« Resilience

« Shrink/Expand sets of nodes

« Application reconfiguration to add control
points

« Adapting to memory capacity

T PPL
24 UIUC

XMAPP 1deas and features
have been demonstrated in
full-scale production
Charm++ applications

NAMD: Biomolecular simulations

 Collaboration with K.
Schulten

« With over 45,000
registered users

« Scaled to most top US

supercomputers

* |In production use on Recent success:
supercomputers and Determination of the
clusters and desktops structure of HIV capsid

. Gordon Bell award in by researchers including
2002 Prof Schulten

T PPL
26 UIUC

ChaNGa: Parallel Gravity Evolution of Universe and
Galaxy Formation

« Collaborative project
(NSF)
— with Tom Quinn, Univ. of
Washington
« Gravity, gas dynamics

« Barnes-Hut tree codes
— Oct tree is natural decomp

— Geometry has better
aspect ratios, so you
“open” up fewer nodes

— But is not used because it
leads to bad load balance

— Assumption: one-to-one With Charm++: use Oct-
map between sub-trees Tree, and let Charm++ map
and PEs subtrees to processors

— Binary trees are considered
][better load balanced ——

11/18/13 WOLFHPC2013 27 UIuC

EpiSimdemi¢s

’

—L “/Keéith Bisset, Madhav Mirathe - Day 1
v WP :
I ..'- N ." . . .
“.. “a : "3 3 3 " : -
4 "'a‘. : ’. (. : 5 %
" ' # | G
Spread of Infection:

Agent-based Simulation ~ & !
Infection Prevalence - % Population ata Sle ‘NOAA U.S. Navy, NGA, GEBCO
0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 |magb © 2011 TerraMetrics

O, “Cooole
lmgpe USDA Farm Service Agency @) ‘ﬁ I?Uﬁ_'Sl; 2 '-(’OQ Sk
" © 2011 Cnes/Spot Image 3 @ ssovor

A just-published
book

surveys seven
major applications
developed using
Charm++

See booth#434
(CRC Press/
Taylor & Francis)

=r |

Parallel Science and Engineering Applications

The Charm++ Approach

= oy
Laxmikant V. Kale
Abhinav Bhatele

UIUC

So, HLPS designers, IF you embrace
overdecomposition, very powerful adaptive
runtime techniques become feasible.

Moreover, these adaptive techniques are very
much essential in the coming era of complex
heterogenous and (yes) dynamic machines,
and sophisticated and dynamic applications

High Level Programming Systems

« But the largest benefits come from
specialization
— Domain specific languages
— Domain specific Frameworks
— Interaction-pattern specific languages

I '

PPL

UIUC

MSA: Multiphase Shared Arrays

Observations: * |n the simple model:

General shared address space . A program consists of

abstraction is complex — A collection of Charm
Certain special cases are simple, threads. and

and cover most uses . .
— Multiple collections of
data-arrays

« Partitioned into pages
(user-specified)

Each array is in one
mode at a time

— But its mode may change
from phase to phase

Modes

— Write-once

— Read-only

— Accumulate

A — Owner-computes

Dp
][o |geeL

-UI0C:

Charisma: Static Data Flow

Observation: many CSE applications or
modules involve static data flow in a
fixed network of entities

The amount of data may vary from
iteration to iteration, but who talks to
whom remains unchanged

N N4 ~o ~
N ~o -
N X \ /\(\
X /"\\ \ Transpose e
- N e .
- NN - -
oogo4 N 7~ s
0000, N ‘ e
0ooo0™~ 3 _ " Multicast
~ 1.

Patch Integration

« Arrays of objects

 Global parameter space T EWNrrYY
- Objects read from and write rlticas S point to Poin

. . PME

lnto 1t " Bonded "’Non—bonded .' ‘ (.’

o <> Computes @ @ Computes 5 ° ,\ .

« Clean division between ;. Y 4
Reductions ﬁint to Point

P9V -----FTFI D

- Sequential methOdS Patch Integration .

EY I 110 ¢

7

- Parallel (orchestration) code

Charisma++ example (Simple)

while (e > threshold)
forall11n J
<+e, Ib[1], tb[1]> := J[1].compute(rb[i-1],Ib[1+1]);

] m
. | 2 UIUC

A View of an Interoperable Future

. ————————————————————————————————

/ \

l i | e
: Higher Level Languages L _ 0
! . Domain Specific |
: ___________ \ f-—-:-:-———-——-:\ : : Frameworks :
) :\ AMPI /: I : o |
I S | | (T T T T T T T T T N\ |
y X 'F::-G_—;::j\' ' | ParFUM | |
| 4 | | \ J |
: l MSA l o) Y :
L e B e tasuiubsuiutat W
N\ | Ay | | || 7 \ 1
| \ Chari Vol e = LNy |
o Ehersmas [Newlangi | | & Coooeoooe
T !

i ' Virtualization based on Migratable Objects |

| supported by an Adaptive Runtime System |

] m
35 UIUC

I

Interoperability

e So far:

— One can write an application in one of several
“languages”, and have it use the same ARTS

* Interoperability requires

— Allowing composing applications using modules
written in different HLPS

— So that they co-exist efficiently

— So that they can exchange control and data
uniformly

* For this:

— we have to look at how HLPSs view a “processor”
and how control transfers among program units

36

PPL

UIUC

Implicit vs explict control transfer

 Examples will illustrate this:

— MPI (explicit): control transfer as directed by the
programmer

— Charm++ (implicit): control transfers as dictated
by the message-driven scheduler at runtime

 Interoperability and control transfer

regimes:

— Within explicit HLPS (MPI/UPC/..)

— Within implicit HLPS

« Charm++/MSA/Charisma/.., all XMAPP HLPS
— Across explicit and implicit HLPS

T PPL
37 UIUC

Explicit control transfer regime

 The interoperation itself is relatively easy:
— As long as a common low-level runtime is
agreed on, such as GASNET or Portals, ...
« Typically:

— Boils down to using one of several
communication mechanisms
« Send/recv, CAF style remote accesses, upc get/put

— Still, leaves engineering issues to solve

38

PPL

UIUC

Implicit regimes support parallel composition

Parallel Composition: Al; (B || C); A2

Recall: Different modules, written in different languages
or paradigms, can overlap in time and on processors,
without programmer having to worry about this explicitly

PPL

UIUC

Without message-driven execution
(and virtualization), you get either:

Space-division

O ooe a

40

PPL

UIUC

OR: Sequentialization

41

PPL

UIUC

Data transfer across modules

* For implicit regimes:
— How to transfer data?

— Programmer doesn’t know where the sender or
the receiver is (migratability)

— Programmer doesn’t know how to address the
entities of the other module
* Or else, we have libraries with L2 interfaces!

42

PPL

UIUC

Data Transfer Solutions:

e Use MSA as a common medium!

— Modulel deposits in an MSA, module 2 picks up
data from MSA

— MSA is then accepted as a common data transfer
protocol by all libraries
« Use processor-level concentration
— Deposit data to local processor

— The other modules processor-level entities grab
the data and redistribute it as needed

— May need extensions in the HLPS
« Or use low-level escape valvle for this purpose

43

PPL

UIUC

Mixing Implicit and Explicit control

* Implicit HLPS have a message-driven
scheduler

— Buried deep inside its runtime
* The solution:

— Expose the scheduler!
— Make it a callable function

44

PPL

UIUC

Charm++ interoperates with MPI

(a) Time Sharing

EANANAANAARAN
RANAANRARRRAN

EARAAARANANRAAN
RANAANNANAARAN

i SN — 2
oINS s 3

COCO S\ OE/Eg
OO s\ g

%% MPI Control
Charm++
Control

(]

Interoperability: Recent experience

* Nikhil Jain extended Charm+ + to facilitate
interoperable libraries

46

PPL

UIUC

Is Interoperation Feasible in
Production Applications?

Application Library Productivity = Performance
CHARM in MPI HistSort in 195 lines 48x speed
(on Chombo) Charm++ removed up in Sorting
EpiSimdemics MPI IO Write to single 256x faster
file input
NAMD FFTW 280 lines less Similar
performance

Charm++’s ParMETIS Parallel graph Faster
Load Balancing partitioning applications

T PPL
47 UIUC

Recap

« High Level Programming Systems need:

— A common adaptive runtime system as a base

« Should generate migratable work/data units, at the
backend, to leverage most powerful runtime techniques

 These necessitate implicit transfer of control
— message-driven execution

— Interoperation

« Support and abstractions for interoperation and data-
exchange across multi-paradigm boundaries

« Challenging when implicit-control modules are involved
« Showed some techniques that are useful, but more are
needed
— Message to HLPS developers:

« Use an adaptive runtime system, such as Charm++, to
build upon

T PPL
48 UIUC

Recap

« High Level Programming Systems need:

— A common adaptive runtime system as a base

« Should generate migratable work/data units, at the backend, to
leverage most powerful runtime techniques

« These necessitate implicit transfer of control
— message-driven execution
— Interoperation

« Support and abstractions for interoperation and data-exchange
across multi-paradigm boundaries

« Challenging when implicit-control modules are involved
« Showed some techniques that are useful, but more are needed

— Message to HLPS developers:
« Use an adaptive runtime system, such as Charm++, to build upon

More info on Charm++: See you at Charm++ BOF at
http://charm.cs.illinois.edu Tues 5:30-7:00, Rm 702-706

I am looking for a postdoc
and/or a research programmer

T PPL
49 UIUC

_ | = UIUC

