11/18/2013

Preliminary results on multiple
hybrid nodes of Knights Corner
and Sandy Bridge processors

Tan Nguyen and Scott Baden
Dept. of Computer Science & Engineering
University of California, San Diego

>
g
o
=
V)
O
=
o
o
Ro!
&
q)
Ro!

—
[N
—

Presenter: Tan Nguyen

Introduction

 Systems consisting of hybrid nodes of CPUs and accelerators

* Communication overheads are growing due to node acceleration and
the decrease in memory per core

* Load balancing problem arises when heterogeneous resources run at
different speeds

11/18/2013

* MPI applications have to be optimized/rewritten to
* Hide communication overheads
* Handle load balancing

>
S
<
S
V)
O
=
o
o
O
S
q)
O

* We present our solutions to overcoming these challenges on
Stampede, a system of Sandy Bridge-Knights Corner nodes

* Semi automatically optimize synchronous MPI code previously written
for homogeneous platforms

* Bamboo, a directive-based compiler, translates MPI code into a task
graph representation that runs under a dataflow-like execution model

—
N
—

Overview

11/18/2013

Experimental testbed

MPI programming and optimization

A graph-based execution model

Bamboo, a directive-based translator

Experimental results
* Latency hiding
* Load balancing

Conclusion

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
w
—

Experimental testbed

o
—i
o
@\
S~
(0]
—
S~
—
—

Stampede cluster at TACC
» 2 Pflops Sandy Bridge + 7 Pflops KnC

* 6400+ nodes =
O
A hybrid node configuration v
: : O
* 2 Sandy Bridge host and 1 KnC device n
. A node configuration with 2 Sandy Bridge and g
* PCle between host and device 1 Knights Corner. Image source: TACC O-
Knights Corner @
O
* Many Integrated Core (MIC) =
* 61 in-order processor cores Wawe | wame .. kom | weee | @ B
<) S
* 512-bit SIMD ALU per core : EErEEE | FEEETEEE -
) =
Sandy Bridge T | S .. WS | S
g INTERPROCESSOR NETWORK §
* 8 out-of-order processor cores i 2 - =

 \
I
—

The MIC Architecture
Image source: Intel

Computation modes on Stampede

11/18/2013

Hosts only: Sandy Bridge processors only

MIC-MIC: Knights Corner processors only

Symmetric: Sandy Bridge and Knights Corner work as SMP nodes

Offload: Sandy Bridge as host and Knights Corner as device

Reverse offload: currently not available

InfiniBand

. 3

—_

M

InfiniBand

InfiniBand

InfiniBand

>
g
o
ge)
V)
O
=
o
o
Ro!
&
q)
Ro!

—
Ul
—

1)

CPU CPU
IHHHI ||IHI\

Host-Host MIC-MIC Symmetric

Overview

11/18/2013

MPI programming and optimization

A graph-based execution model

Bamboo, a directive-based translator

Experimental results
* Latency hiding
* Load balancing

Conclusion

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
(0))
—

A motivating app in 3D

* Jacobi iterative solver for 3D Poisson’s equation

1// V, U, and rhs are N x N x N grids
2for step = 1 to num_steps{
3 for k =1 to N-2 //Z

11/18/2013

4 for j =1 to N=2 //Y

5 for i = 1 to N=-2 //X: the leading dimension

6 VIk.j.i]= alpha *(U[k—1,j.1]+U[k+1,j.1]+U[k,j—1,i]+U[k
JJ+1,i1]+U[k,j,i—1]+U[k,j.i+1])—betaxrhs[k.j,i]

7 swap(U.V)

8}

Un-optimized kernel of Jacobi solver

* 2 tier programming MPI+OpenMP
* MPI to communicate across processors/nodes
* 3D MPI decomposition
* Kernel optimizations
* OpenMP with collapse clause on Z and Y dimensions
* SIMDize along X dimension
* Loop tiling
 Stencil unrolling on the time domain [Chipeperekwa’s MS Thesis,12]

>
S
o
=
V)
O
=
o
o
O
S
q)
O

—
~
—

MPI code for Jacobi solver

for step = 1 to num_steps/2{
#pragma omp for
Pack data to ghostcells
MPI_Isend (to left/right/up/down/north/west)
MPI_Irecv (from left/right/up/down/north/west)
#pragma omp for
Unpack data from ghostcells
MPI_Waitall
#pragma omp for
10. unrolled stencil update
11.)
12. MPI_Reduce (residual, MPl_SUM, root= 0)

11/18/2013

ol B AR

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
(00)
—

Evaluating the computation modes

Parallel
Weak scaling on 16 nodes ¢ 800 Efficiency = 70%

Problem size/node 5 600

* 256x512x512 500
: : g 00
“Basic” MPI code variant =300
= 200
2 100

0 I I I 1

Host-Host MIC-MIC Offload Symmetric

MPI Performance of Jacobi solver on 16 nodes

Symmetric mode provides the highest performance
From now on we use symmetric mode

11/18/2013

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
(o)
—

Hiding inter-node communication u
o\
* Approach #1: * Approach #2: §
* Overlap communication * Over-decompose for pipelining o
with computations in the e B =
i) i : L X X
inner-most region :““: :““:
000000 0000, 0000,
9000 0000
"": TYY X1

For each of 3 spatial dimensions

Isend and Irecv
Update left grid

|___isendand Irecy | —

Isend/Irecv ghostcells

Update the blue mesh

Isend and Irecv

Isend and Irecv
Update left grid

>
g
o
=
V)
O
=
o
o
Ro!
&
q)
Ro!

Update right grid

Waitall
Update the red portion

This approach hurts locality

Need system support to:
- Over-decompose the problem
- Schedule comp/comm at runtime

—
[N
o

—

Graph-based, data-driven execution

Overview

11/18/2013

A graph-based execution model

Bamboo, a directive-based translator

Experimental results
* Latency hiding
* Load balancing

Conclusion

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
[HY
[N

—

A graph-based execution model

11/18/2013

Program Graph <T, E> and runtime system (RTS)
A tasks may have input and output edges

Outputs are delivered by the runtime system
Tasks idle when waiting for inputs

When an input arrives, the RTS evaluates task state

* A task exposes its inputs to the RTS via a firing rule

* Task state becomes runnable when all inputs are available
A task will be scheduled by the runtime system when

* Task is in runnable state

* There are available computing resources

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
[N
N

—

Representing MPI program as :
S~
0
task graph 2
—i
* Vertices: virtualize a process to multiple tasks (recv) (recv)
* Process id -> task id <src 1,tag> <srcn, tag>
* Number of processes -> graph size \

* Task id and graph size are determined at runtime

* Edges: treat MPI send/recv as task dependencies
* Input edge: message <source, tag>

* Output: message <dest, tag>
<dst 1,tag> <dst m, tag>

* Cycles are allowed
(send) (send)

>
S
<
=
V)
O
=
o
o
O
S
q)
O

* Inputs and outputs may change during execution

—
[N
w

—

Overview

11/18/2013

Bamboo, a directive-based translator

Experimental results
* Latency hiding
* Load balancing

Conclusion

>
S
<
=
V)
O
=
o
o
O
S
q)
O

 \
[N
D

—

Bamboo Programming Model

Matching-regions
* Determine graph’s inputs/outputs
* Contain send/receive matchings

* No matching is allowed across
matching-regions

Send/receive blocks

* Statements in SBs are independent oficl):

12.
13.
14.
15.
16.
17.
18.

those in RBs

* |f a send must go after a Recy, place
both in a receive block

Computations (optional)

Treat collective as a set of point-to-
point primitives

1.
2.
3.
4.
5.
6.
7.
8.

9.

#pragma bamboo olap
for step = 1 to num_steps/2{
#pragma bamboo send
{ #pragma omp for
Pack data to ghost cells
MPI_lsend (to left/right/up/down/north/west)
}
#pragma bamboo receive
{
MPI_lrecv (from left/right/up/down/north/west)
#pragma omp for
Unpack data from ghost cells
}
MPI_Waitall
#pragma omp for
unrolled stencil update
}//end for
MPI_Reduce (residual, MPI_SUM, root= 0)

11/18/2013

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
[N
Ul

—

MPI code annotated with Bamboo

<left,tag0> <south,tag0>

<left,tag0> <south,tag0>

<childl,
tagReduce>

<childN,
tagReduce>

<parent,
tagReduce>

Jacobi updatg

==

MPI_Reduce

© PN DU EWN R

. #pragma bamboo olap
for step = 1 to num_steps/2{
#pragma bamboo send

U

#pragma bamboo receive

{
}

. #pragma bamboo olap

{

#pragma bamboo send

U

#pragma bamboo receive

U

N N R
w N = O

14, }

11/18/2013

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
[N
(©))]

—

MPI Reduce

11/18/2013

* Binomial tree #pragma bamboo olap
{ #pragma bamboo send
n if(leaves) Send to parent
#pragma bamboo receive

T\\ { if(innernodes){

for (smallest to largest children
Receive data from children
if(hasParent) Send to parent

}
}

<childl, <childN,
tagReduce> tagReduce>

N/

>
g
o
=
V)
O
=
o
o
Ro!
&
q)
Ro!

* Bamboo automatically replaces MPI_Reduce by an
implementation based on point-to-point

* The programmer doesn’t have to implement
collective nor annotate the code

—
[N
~

—

<parent,
tagReduce>

Bamboo implementation

o
—
o
@\
S~
(0]
—
S~
—
—

* Tarragon runtime system [SC 06, DFM 11] [Cicotti’s PhD thesis ,11]

* Task graph library -
©O
* Runtime system v
S
* Bamboo translator [SC 12] %
* Built on top of the ROSE framework http://rosecompiler.org >
1 @)
Annotated MPI |
o S
EDG front-end | o _ _ _ _ _ _ _ _ _ __ __ _ /I : e :
<z ,’r L N :l Inlining | : E
¢ I Annotation handler ’
ROISE AST /! : IT % i Outlining i B
MPlextractor | Analyzer |1 Transiating |
ro e A ;
Bamboo middle-end :| Transformer ||.<"
Rz . G :" : Message buffer ||
ROSE back-end Y :l Optimizer I I reuse :
IV - N SN el 5 . |
[I Tarragon output J
'S

MP1 compiler

Overview

11/18/2013

Experimental results
* Latency hiding
* Load balancing

Conclusion

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
[N
(\o)

—

Results with latency hiding "
o
~
~
%)
-
=

Symmetric mode 1600 7 —
1400 4—
1200 . B MPl-sync EBamboo =7
=
¢ 1000 _%— _g
3 = 7&K
G} =/ =7 .
400 % % E%— _8

« Weak scaling study (384 P1/3)A3 200 =77 :é :Z :é_ O

== 7 i ==V

* Performance improvement over Nod:coum s s 18 3 o

MPI_Sync S
+ 24% on 16 nodes 1600 -
* 20% on 32 nodes 1400 5 MPi-sync @ Bamboo %% S

 Strong scaling study 10243 &if,% é_

* Performance improvement over S 2$ % %_

MPl_SynC © 400 %7; /42 //42—
* 29% on 16 nodes 203 % /¢ %_ (20 J
* 32% on 32 nodes Node count 8 | 16 | 32 |

Load balancing: static v.s.
dynamic scheduling

11/18/2013

* What if H M
* Technological changes
* Node configuration changes M M

* Application changes
* Network traffic always changes Static scheduling

* Static scheduling
* Low overheads

>
g
o
=
V)
O
=
o
o
Ro!
&
q)
Ro!

* Poorly adaptive
* Dynamic scheduling
* Higher overheads

* Highly adaptive

—
N
=

—

Dynamic scheduling

A rectified symmetric mode to
load balance at runtime

* Treat host and device as workers

* Each processor can act as multiple workers
* Work-pool model

* Dynamic task distribution

* Asingle shared queue or multiple queues with a work stealing
policy

|—>H H [

e
orkpool workpool

(a) Symmetric mode (b) A proposed scheme to rectify symmetric
mode

11/18/2013

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
N
N

—

Setup to generate unbalanced
processor speeds in symmetric mode

11/18/2013

* ISAs on host and device are different
* We use a Knights Corner to simulate a node with host and device
* A simulated hybrid node

* Simulated device has more cores than simulated host
* We use % cores as host and % cores as device

- - i 15 host cores 45 MIC cores

Shared job queue 1 worker 3 workers

>
g
o
=
V)
O
=
o
o
Ro!
&
q)
Ro!

Simulated host Simulated MIC

* A core of simulated device is slower than that of simulated host

* We add redundant work if a task is scheduled on device to make the core
on device slower

—
N
w

—

Task distribution results with load balancing

* 3 workers on MIC and 1 worker on host

11/18/2013

* Slowing down MIC workers to generate load unbalance
* The problem of processor speed variation is eliminated
* Faster workers takes more tasks

* We need more virtualized tasks when the speed differential among
workers increases

3 tasks to MIC:

1 task to host
A

. 100% T
1 task to MIC: 50% |—

2 tasks to host c gox
O
A £ 70%

>
S
<
=
V)
O
=
o
o
O
S
q)
O

w W,

d
#
|
o

7

|

|

|
TS

|

|

r

\
N

Wrk0 Wrkl Wrk2 Wrk3

0% T 1 1 1 T
6 = 25 2 15 125

J Slowing down factor

ASOH,
Vo
)
S
—

WY

Load balancing and latency hiding on
multiple nodes

11/18/2013

* Communication hiding and load balancing can happen at the same
time

=

>
g
o
ge)
V)
O
=
o
o
Ro!
&
q)
Ro!

25
; 2
Slowing down factor ** 123 1

(b) Efficiency (performance/sustainablePerformance) with and without
virtualization on 64 simulated nodes

—
N
92}

—

€T0Z/8T/TT Nhpoa’psdn-ooqueq

Overview
Conclusion

Conclusion

* We presented a new programming model that enables
homogeneous computing on heterogeneous platforms

11/18/2013

* Bamboo translates legacy MPI code into the task graph
reprentation

* We demonstrated the benefits of latency hiding and load
balancing

* Future work:
* Implement the rectified symmetric mode

>
S
<
=
V)
O
=
o
o
O
S
q)
O

* Evaluate this mode on real heterogeneous configuration
* Apply to real code

—
N
~N

—

Download and install

11/18/2013

C') bamboo.ucsd.edu

Download

Virtual Machine Image

VMware playar can be found hera Link

Install Bamboo and requirement software from scratch

You can also download Bamboo from here Bamboo v, tar

>
g
&
=
V)
O
>
o
o
Ro!
&
q)
Ro!

Install Bamboo

tar -xvf bamboo_vi.tar

In file configura.in, updata paths to ROSE, BOOST, TARRAGON, and BAMBOO
makea

In Makefle, update the INPUT variable with the path to youwr MPI input file
make translate

Install ROSE

You can downmload ROSE at http://rosecompiler.orq
[nstallation guide and user manual are provided by ROSE
we highly racommend version 0.9,.53-mutiplatform-11957

. s 8 e

Install BOOST

Acknowledgement

11/18/2013

* This research was supported by the Advanced Scientific
Computing Research, the U.S. Department of Energy, Office of
Science, contracts No. DE-ER08-191010356-46564-95715 and
DEFC02-12ER26118

* Tan Nguyen is a fellow of the Vietham Education Foundation
(VEF), cohort 2009, and was supported in part by the VEF

* This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575

* We would like to thank Stampede’s consultants, who provided
quick and thoughtful responses to our questions while
conducting this research

>
S
o
S
V)
O
=
o
o
O
S
q)
O

—
N
(o}

—

References

11/18/2013

* [Chipeperekwa’s MS thesis, 12]

http://cseweb.ucsd.edu/groups/hpcl/scg/papers/2013/TMChipeperekwa-
MSReport.pdf

* [Bamboo website] http://bamboo.ucsd.edu/

* [SC 12] T. Nguyen, P. Cicotti, E. Bylaska, D. Quinlan and S. B. Baden, "Bamboo
- Translating MPI applications to a latency-tolerant, data-driven form",
Proceedings of the 2012 ACM/IEEE conference on Supercomputing (SC12),
Salt Lake City, UT, 2012

* [SC 06] Pietro Cicotti and Scott B. Baden, «Asynchronous programming
with Tarragon” in Proc. 15th IEEE International Symposium on High
Performance Distributed Computing, 2006

* [DFM 11] Pietro Cicotti and Scott B. Baden, Data-Flow Execution Models for
Extreme Scale Computing (DFM 2011), Galveston Island, Texas, pp. 28-37,
Oct 10, 2011

* [Cicotti’s PhD thesis, 11] Pietro Cicotti, Ph. D. Dissertation, Department of
Computer Science and Engineering, University of California, San Diego, 2011

>
S
<
=
V)
O
=
o
o
O
S
q)
O

—
w
o

—

