Reducing Overhead in the Uintah
Framework to Support

Short-Lived Tasks on GPU-
Heterogeneous Architectures

Brad Peterson, Alan Humphrey, Harish Dasari,

James Sutherland, Tony Saad, Martin Berzins
Scientific Computing and Imaging Institute, University of Utah

-
UUUUUUUUUU
OF

Outline:

Central Theme: Improvements in Uintah's runtime system allows many

additional classes of computations to achieve speedups by utilizing GPUs.

V.

Uintah Framework - Overview

Challenges certain computations pose with Uintah's runtime
lll. Simplifying shared GPU data stores
IV. Allowing for GPU data persistence, including halo information

Summary and Questions

 grllpEer |

SCH &
o
INSTITUTE -~ SO

DOE Titan - 18,688 nodes

Each with one NVidia GPU and one AMD Opteron

27.1 Petaflops in total
24.5 petaflops for the GPUs
2.6 petaflops for the CPUs

THEU

UNIVERSITY
OFUTAH

Uintah: Runtime System for

Multiphysics Simulations B
«
Plume Fires

Chemical/Gas Mixing

cAGSTOHE

B Bre 8
Industrial d Ch A
Flares ¥ MD — Multiscale .u.
SCE & Materials Design ey

Uintah Domain Decomposition

* A structured mesh grid is Eeebiies.. e
partitioned into uniform patches

* One node is assigned many
patches (usually one patch
per logical core)

*One MPI rank per node

* Halo (ghost cells) exchanged jp—
with MPI rank neighbors / i

BT

. . Local patch
» Adaptive mesh refinement o
MPI] < MPI
Ghost cells — N
Patch structure within one MPI rank U

THE
UNIVERSITY
OFUTAH

Uintah Task Parallelism s
and Task Graph L il

* User defines Uintah Tasks: e g 11
* Input and output variables L g e L
* A callback function e e
- Uintah analyzes task dependencies b I
 Creates a task graph
* Exchange halo (ghost cells)
with neighbors
* Prepares tasks and executes
them asynchronously

BL P
§AE

i

i 4"};| s =

U

THE
UNIVERSITY
OFUTAH

Uintah Full Overview

* Scales to tens of thousands of nodes,
and hundreds of thousands of cores

* Parallelism through MPI, Pthreads,
GPUs, and Xeon Phis.

* Scheduler fully decentralized, no
master thread

* Shared and lock free data warehouses

Overall goals:

* Hide runtime from the user

* Keep CPU and GPU programming
models similar

INSTITUTE - SO

Accelerator
Threads or =
Cores

Threads

frmmmm A ——
1 1

S

Completed Task

A

—

‘_(*

'

Host

&
1
1
1
1
1
1
1
CPU = fe—
1
1
1
1
1
1
L

")y
GET

LN

79

Ry v |
GET

GPU or PHI
\ PUT .
“GPU or.XEOtI PHI " > Data
Running Task(s) o GET Warehouses
GPUor XEONPHI PUT GPL,;:::HI
Running Task(s) GET Warehouses
J A
h2o | | D2H
Data | | Data
Copies |

+ Copies

1 Data f------
Warehouses MPI Recv
i v |
Accelerator Task CPU Task
Task Graph Ready Queue Ready Queue
Data Preparation Queues
Internally ready I
task: > MPI Data Ready
Receives Queue b
_ Shared Scheduler Objects (host memory))

This work focuses on the highlighted regions

MPI Send

Ne'gwork -

<

THEU

UNIVERSITY
OFUTAH

Difficulties With Previous Runtime

0.76s 0.77 s 0.78s

e A
~runtimearl /I N | I

~ S MemCpy (HtoD)

|
= Compute I - LA

; i
Uintah I Wasatch Task |
overhead | l

If a GPU task executes quickly, the overhead becomes substantial

Unwanted overhead was mainly caused by:

* Copying full GPU Data Warehouses for each task

* Tasks with many variables using the PCle bus (This pictured task required 120 variables)
* Many materials in the computation

O

HE
UNIVERSITY
OFUTAH

Shared GPU Data Warehouses

The previous design had a philosophy:

GPU or PHI
1. Any task on any CPU thread can access C s g it oLl); — pata
the host-side Data Warehouse = . Warehouses
2. This CPU Data Warehouse is shared and lock free wo | | D2H
Data | | Data
. Copies | Copies
The same philosophy for a GPU Data Warehouse had problems R

Dat
* The GPU Data Warehouse kept growing, 2-3 MB in size Wareioauses -

* More CPU cores meant more full syncs prior to every GPU task

* We halted all GPU computations to allow full sync to GPU

* Trying to avoid halting and copy task portions into the GPU DW is problematic

» Underlying code was turning into maintaining two separate Data Warehouse objects

Root issue: Lock free intrinsics work well for host DW. No easy way to sync to
and get data from an accelerator DW in a lock free way.

b, THE u
SCl D UNIVERSITY
msTiruTe SO OFUTAH

Solution - Task Specific Data Warehouses

New philosophy: « Can overlap computation with communication
« Each task has its own distinct GPU DW » Get and put interface format does not change
* No sharing or lock free intrinsics required * Required no changes to existing GPU task code
GPU or XEON PHI PuT sl GPU or XEON PHI PuT [[
{ Running Task(s) GET NStoh Bl ces { Running Task(s) T‘:DDD E Tk
?_ Data
GPU or XEON PHI PUT Biihes GPU or XEON PHI_ EIEII:I i Warehouses
{ Running Task(s) GET Ware:oauses { Running Task(s) | =k
2 ' I
| H2D | D2H
H2D | D2H Data Data
Old approach Data | | Data New approach copies | | copies
Copies | Copies |
v —¥
Data GPU or PHI
Warehouses i
Warehouses

THEU

SCI @_’ UNIVERSITY

INSTITUTE OF UTAH

Making Task Data Warehouses Small

« Perform a dry run. All variables and total amount of copies must be accumulated and
counted.

* A serialized object is allocated to minimum size, reduces allocs and API calls.

* Flexible design can work for Xeon Phis or any future accelerator with its own memory.

Before - Copying an entire Data Warehouse object
521.5ms 521.75ms 522 ms

Memcpy HtoD [async]

After - Copying smaller Task Data Warehouse objects
441 ms 441.25 ms 441.5 ms

THEU
SCI N UNIVERSITY
INSTITUTE OF UTAH

Ghost Cells with Previous Runtime

* Quick and easy. Designed for problems with computations where
each timestep took at least 1 second to complete

* Lets all ghost cell management occur in host memory

* Too much movement across the PCle bus for short-lived tasks

Ghost cell Ghost cell
source destination
[GPU}[GPU] [GPU][GPUJ
From on
node) rom
\ / \ e <-_ ;ank ;llPI
Host memory) Host memory /
_ Y,
4 N rom an —_—
(Off-node } Off-node i
I\ J A

From same GPU U

THE
UNIVERSITY
OFUTAH

Ghost Cells Management Refactor

* New philosophy: Keep data persistent where it's needed.
* Data in GPU memory stays in GPU memory between timesteps.
* The model should be applicable for other accelerators.
* Ghost cells can arrive from or be sent to many various sources.

* Implementation is complicated.
* Many of Uintah's strengths come from having one MPI rank per
node.
* Ghost cells in GPU memory need to be buffered into contiguous
memory (whether or not CUDA aware MPI is used).

U

~ THE
SCl D UNIVERSITY
msTiruTe SO OFUTAH

Ghost Cells Management Refactor

* Many new scenarios to manage.
* Includes intra-GPU ghost cell variable-to-variable copies
* Includes on-node GPU to GPU copies.
* Scenarios can be queued into similar work units

Ghost cell Ghost cell /

source destination |

|
s L
[Host memory > Host memory) L /[/4,
[Assigned GPU Assigned GPU] From on >
node GPU 2 (__ From MPI
. Rank 2
C Another GPU Another GPU] /
[Off-node Off-node j From MPI Rank 1 >

* U

E
From same GPU VERSITY
OF UTAH

SCI »

INSTITUTE

Ghost Cells - Many Complex Scenarios

Adjacent variable is
off-node

v

Receive ghost cells

Adjacent variable is
in host memory

Perform device to

via MPI

rOff—node

Send off-node
via MPI

ﬁln host memory

Collect ghost cells
into task variable

On GPU

Where
should the
task’s variable
be?

On host

-

Where
is the task’s
variable?

—

In GPU
memory

host copy

tHost memory

or off-node

ﬁSame GPU

Put into Task Data
Warehouse

_'—P

Place metadata
into a Task Data
Warehouse
describing how to
perform ghost cell

Put into Task Data
Warehouse

copies within GPU

Copy Task Data
Warehouse into
GPU

I

Invoke kernel to
collect ghost cells
into task variables

Adjacent variable is
in GPU memory

Where
should the
task’s variable
be?

On-node
different GPU

o

Copy ghost cells
into an array

v

Copy array from
source GPU to
destination GPU

All of these ghost cell
scenarios exist, and this work
addresses them in Uintah

THEU

UNIVERSITY
OFUTAH

Speedup
Prevous vs Current

O P, N W~ 01 O

=
SCl. 2

F o=
INSTITUTE - O

Results — 3D Poisson Equation

* One of Uintah's hardest tests for GPU performance.
« Good “stress” test. Just a simple stencil computation per timestep.

GPU 3D Poisson Equation

643

128"3 19273
Mesh Size

25673

Time (ms)

An average timestep for 19273

Computation
M Overhead

40

20

=
Previous Current

U

THE
UNIVERSITY
OFUTAH

Results — Wasatch Scalability Tests

* |nthe 323 cases:
» Before it was faster to run on the CPU
 Now it is faster to now run on the GPU

Wasatch Test A Wasatch Test B
A5 Solving 10 transport equations Solving 30 transport equations
&
w 25 | W Initial GPU Framework
> ®m New GPU Framework
S 2
=
D
& 1.5
o
w J J
1673 3273 64"3 12823 6"3 3203 6473 12823
Mesh Size

SCI !)

: UNIVERSITY
INSTITUTE OF UTAH

Conclusions

Uintah provides powerful abstraction for solving challenging engineering problems
Shields application developers from challenges in heterogeneous systems

This work significantly reduces overhead in the original GPU engine

Allows a much broader range of computational tasks to leverage GPUs

Wasatch simulations weak scale to 12,800 GPUs on Titan

Naturally extends to other accelerators such as Xeon Phis

Sets the stage for integration with performance portability libraries such as Kokkos

The work of Peterson, Dasari, Berzins and Sutherland was funded by NSF XPS Award 1337135 and which benefited from background
work on the Uintah framework and Wasatch by Humphrey, Saad, and Sutherland. This material is based upon work supported by the

Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NAG002375. We would also like to
thank all those involved with Uintah past and present, Qingyu Meng in particular.
TH[U
UNIVERSITY

INSTITUTE T | UTAH

	Slide 1
	Slide 2
	Uintah Overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

