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Outline:

DOE Titan –  18,688 nodes  
Each with one NVidia GPU and one AMD Opteron

27.1 Petaflops in total
24.5 petaflops for the GPUs
2.6 petaflops for the CPUs

Central Theme: Improvements in Uintah's runtime system allows many 
additional classes of computations to achieve speedups by utilizing GPUs. 
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Uintah Domain Decomposition
● A structured mesh grid is 
   partitioned into uniform patches
● One node is assigned many 
  patches (usually one patch 
  per logical core)
●One MPI rank per node 
● Halo (ghost cells) exchanged 
  with MPI rank neighbors
● Adaptive mesh refinement

Patch structure within one MPI rank



Uintah Task Parallelism
 and Task Graph

● User defines Uintah Tasks:
● Input and output variables
● A callback function

● Uintah analyzes task dependencies
●  Creates a task graph
●  Exchange halo (ghost cells) 

 with neighbors
●  Prepares tasks and executes 

  them asynchronously



Uintah Full Overview
 

● Scales to tens of thousands of nodes,    
  and hundreds of thousands of cores
● Parallelism through MPI, Pthreads,        
  GPUs, and Xeon Phis.
● Scheduler fully decentralized, no            
 master thread
● Shared and lock free data warehouses

Overall goals:
● Hide runtime from the user
● Keep CPU and GPU programming         
  models similar

This work focuses on the highlighted regions

 



Difficulties With Previous Runtime

If a GPU task executes quickly, the overhead becomes substantial  

Unwanted overhead was mainly caused by:
● Copying full GPU Data Warehouses for each task 
● Tasks with many variables using the PCIe bus (This pictured task required 120 variables)
● Many materials in the computation
 



Shared GPU Data Warehouses
The previous design had a philosophy: 
1. Any task on any CPU thread can access
     the host-side Data Warehouse
2. This CPU Data Warehouse is shared and lock free 

The same philosophy for a GPU Data Warehouse had problems
● The GPU Data Warehouse kept growing, 2-3 MB in size
● More CPU cores meant more full syncs prior to every GPU task 
● We halted all GPU computations to allow full sync to GPU
● Trying to avoid halting and copy task portions into the GPU DW is problematic
● Underlying code was turning into maintaining two separate Data Warehouse objects

    

Root issue: Lock free intrinsics work well for host DW.  No easy way to sync to 
and get data from an accelerator DW in a lock free way. 



Solution - Task Specific Data Warehouses
New philosophy:
● Each task has its own distinct GPU DW
● No sharing or lock free intrinsics required

● Can overlap computation with communication
● Get and put interface format does not change
● Required no changes to existing GPU task code

New approachOld approach



Making Task Data Warehouses Small
● Perform a dry run.  All variables and total amount of copies must be accumulated and           
   counted.
● A serialized object is allocated to minimum size, reduces allocs and API calls. 
● Flexible design can work for Xeon Phis or any future accelerator with its own memory.



Ghost Cells with Previous Runtime
● Quick and easy.  Designed for problems with computations where 

each timestep took at least 1 second to complete
● Lets all ghost cell management occur in host memory
● Too much movement across the PCIe bus for short-lived tasks  



Ghost Cells Management Refactor
● New philosophy: Keep data persistent where it's needed.

● Data in GPU memory stays in GPU memory between timesteps. 
● The model should be applicable for other accelerators.  
● Ghost cells can arrive from or be sent to many various sources.

● Implementation is complicated.
● Many of Uintah's strengths come from having one MPI rank per 

node. 
● Ghost cells in GPU memory need to be buffered into contiguous 

memory (whether or not CUDA aware MPI is used).



Ghost Cells Management Refactor
● Many new scenarios to manage.

● Includes intra-GPU ghost cell variable-to-variable copies   
● Includes on-node GPU to GPU copies.
● Scenarios can be queued into similar work units



Ghost Cells – Many Complex Scenarios

All of these ghost cell 
scenarios exist, and this work 
addresses them in Uintah



Results – 3D Poisson Equation
● One of Uintah's hardest tests for GPU performance.  
● Good “stress” test.  Just a simple stencil computation per timestep.

  
  



Results – Wasatch Scalability Tests
●  In the 32^3 cases:

● Before it was faster to run on the CPU  
● Now it is faster to now run on the GPU



Conclusions
● Uintah provides powerful abstraction for solving challenging engineering problems
● Shields application developers from challenges in heterogeneous systems
● This work significantly reduces overhead in the original GPU engine
● Allows a much broader range of computational tasks to leverage GPUs
● Wasatch simulations weak scale to 12,800 GPUs on Titan
● Naturally extends to other accelerators such as Xeon Phis
● Sets the stage for integration with performance portability libraries such as Kokkos
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