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Abstract. Symmetric data objects have been introduced by @@ in context

of SHMEM remote memory access communication on Crap/E systems

and later adopted by SGI for their Origin serve8gmmetric data objects
greatly simplify parallel programming by allowingagrammers to reference
remote instance of a data structure by specifyidgress of the local
counterpart. The current paper describes how synundata objects and
remote memory access communication could be impigedein Fortran 95
without requiring specialized hardware or compsepport. NAS Multi-Grid

parallel benchmark was used as an application ebeampd demonstrated
competitive performance to the standard MPI impletaigon.

1. Introduction

Fortran is an integral part of the computing enwinent at major scientific
institutions. It is often the language of choice dexveloping applications that model
complex physical, chemical, and biological systems adldition, Fortran is an
evolving language [1] The Fortran 90/95 standard introduced many nevstoacts,
including derived-data types, new array features @petations, pointers, increased
support for code modularization, and enhanced tygletys These features are
advantageous to scientific applications and improegtiogrammer productivity.
Remote memory access (RMA) operations facilitate terrimediate programming
model between message passing and shared memory. dtied ocombines some
advantages of shared memory, such as direct access &u/ghabval data, and the
message-passing model, namely the control over lpcalid data distribution.
Certain types of shared memory applications camipteimented using this approach.
In some other cases, remote memory operations can be sisetligh-performance



alternative to message passing. On many modern plafoRMA is directly
supported by hardware and is the lowest-level andnofteost efficient
communication paradigm available. The RMA has beé&red in numerous portable
interfaces ranging from SHMEM [10, 11, 16], ARMCI2]1 and MPI-2. Among
these, Cray SHMEM has been the most widely usedfatrand offered by
hardware vendors such as Cray, IBM, HP for theihiéectures. Some important
characteristics of SHMEM are the ease of use, siitylidemonstrated potential for
achieving high performance.

One of the important characteristics of SHMEM is supfor symmetric data
objects This concept allows the programmer to access rematanices of data
structures through references to the local instalmcearticular, the programmer is
not required to keep track of addresses on remoteegsocs as mandated by other
RMA models such as LAPI[15] on the IBM SP where adses for remote instances
of the same data object can be different and thud twebe exchanged and stored on
all processors. Implementation of symmetric data d¢bjes difficult without
hardware and/or OS assistance on clustered systens.isTthiecause the virtual
memory addresses allocated by the operating systestofimg instances of the same
data structure in a cluster can be different acrossnthchine. Without symmetric
data objects, the programmer would be required tce $B¢P?) addresses on the
machine. In addition, the overall programming mogelharder to use and the
application codes become more error prone.

In this paper, we take advantage of the new Fof&ifeatures to provide high-
level interfaces to one-sided operations on multidsiwral arrays consistent with
symmetric data-object model of SHMEM. This work is inegiby Co-Array Fortran
[14] with its ability to reference arbitrary sect®of so callecco-arraysusing high-
level array assignment&£o-arrays represent a special type of Fortran 95 arrays
defined on all tasks in the SPMD program. The mairritmrtions of this paper are:
1) definition of an interface that support importdeatures of SHMEM and CAF
using a library- rather than compiler-based approagtmmetric data objects of
SHMEM and one-sided high-level access to multidimeradiarrays that CAF offers
(SHMEM does not offer such ability), 2) a descriptimina portable implementation
of these features that do not require hardware os@port, and 3) demonstration
that the proposed approach can deliver high perfocsaboth in context of
microbenchmarks as well as the NAS NPB Multigrid (M@phchmark [4].

The remainder of the paper is organized as followsti®e 2 describes the
proposed interface and discusses its characteristicsioi®e8t describes the
implementation based on Chasm and the ARMCI one-sided ooioation library.
Section 4 reports experimental results on the Linwstel with Myrinet that
demonstrate that our implementation outperforms th& NWRB version of MG.

2. Proposed Approach

We propose to support symmetric data objects and RIMA Fortran 95
applications based on Fortran 95 array pointers witkciab memory allocation
interface and a set of remote memory access commiamic¢aterfaces handling slices



(sections) of Fortran 95 arrays. These interfaces allmers to allocate/free
multidimensional Fortran 95 arrays and to communickt&a held in this memory
using simple get/put semantics. In addition, the ref@eo the remote instance of
arrays does not require users to keep track of addreasemnmte note. A single
Fortran 95 pointer is used to represent local andhote instances of a
multidimensional array. A unique feature of theseriigices is that they allow users to
take full advantage of Fortran 95 array mechanisike @8rray-valued expressions).

The Fortran interfaces are as follows. Memory atiocais done with calls to the
generic interfacesMal | oc_fa and Free_fa (shown below for real, two-
dimensional arrays only),

nmodul e Mem F95

interface Malloc_fa
subroutine Malloc_2DR(a, Ib, ub, rc)

real, pointer :: a(:,:)
integer, intent(in) :: Ib(2), ub(2)
integer, intent(out) :: rc

end subroutine Malloc 2DR
end interface

interface Free_fa
subroutine Free_2DR(a, rc)
real, pointer :: a(:,:)
integer, intent(out) :: rc
end subroutine Free_2DR
end interface

end nmodul e Mem F95

In the above, the array$ andub contain the lower and upper bounds of the array to
be allocated and the paramateris an error code.

Similarly, the generic interfaces for RMA communiocatiare Put _fa and
Get _fa. To save space, here we only present the intertateet first one for the
double precision two dimensional arrays (the getfate is similar).

nmodul e Types_fa
type Slice_fa

i nt eger |

integer :: h

i nt eger s

end type Slice

end nmodul e Types_fa

o(7)
i(7)
trid

e(7)

nmodul e Mov_F95
interface Put_fa
subroutine Put_2DR(src, src_slc,
dst, dst_slc, proc, rc)
use Types_fa
real, pointer :: src(:,:), dst(:,:)



type(Slice fa), intent(in) :: src_slc, dst_slc
integer, intent(in) :: proc, rank
integer, intent(out) :: rc

end subroutine Put_2DR
end interface

In the communication interfacesy ¢ and dst are the source and destination
arrays respectivel\sr ¢_sl ¢ anddst _sl ¢ contain information about the memory
portion (array section) of the source and destinatioays to be usegyr oc is the
processor number of the destination array, rands an error return code. In addition
to being able access sections of multidimensional syrraybe consistent with the
Fortran 95 capabilities for arrays, the user canspseify stride information.

The current implementation supports integer, floatangy complex data types of
the 8- and 4-byte kinds. Array dimensions rangingnfane to seven (Fortran limit)
are handled. By exploiting Fortran 95 function namaerloading, we can use a single
name for the put operatidPut _f a to handles all data types and array dimensions
using a single interface. The defined memory aliocainterfaces defined above are
mandatory for allocating memory to be accessed rdynétem other processors.
However, they are not required for local arraysreewf data irput, and destination
in get

The semantics of the RMA operations (progress, orggfimllow closely that of
the Cray SHMEM. In order to provide the applicatijprogrammer with abilities to
hide latency, we introduced nonblocking interfaceguit/get calls. A nonblocking
call returns before the user buffer can be accesskdeguires a specialait function
to complete. This feature is not available in SHMEMItHough the CAF standard
does not offer this capability, the Rice CAF compidetds directives that change
semantics of the array assignments to nonblocking @alked non-blocking regions.)

3. Implementation

Unfortunately, the Fortran 95 standamlone does not provide sufficient
capabilities to implement the memory management redquio support symmetric
data objects. However, this is made possible by thefube Chasm array-descriptor
library [9]. In addition, we use the ARMCI portabRMA library to handle
communication. Our approach also relies on MPI forgtartup and control. In fact,
the user can use the interfaces described in théopsesection in the MPI programs
and take advantage of the full capabilities of MBL,ecollective operations.

Chasm

Chasm [12, 3] is language transformation system pimyidlanguage
interoperability between Fortran and C/C++. Largguinteroperability is provided
by stub and skeleton interfaces. This code is geée@rby language transformation
programs taking as input existing user C, C++ orrBorsource code and generating
the stub and skeleton interfaces to the input codetasito3].



One of the challenges of language interoperabilitth irortran is that Fortran
assumed-shape array arguments are passed by an arraptaesather than as a
simple memory address. Array descriptors contain meta dbout the array,
including the base address of the array, the lower @mer bounds for each
dimension of the array, arsbmetimesthe rank of the array and the type of an array
element. The key point is that the format of theydescriptor is not specified by
the language standard, but is left to be specifiedthey vendor of the Fortran
compiler. Chasm provides generic C interfaces to trerdn, vendor-specific array
descriptors. Without the Chasm array-descriptor liprévgre would be no way to
call the ARMCI library from Fortran and allocaterfran 95 arrays using the special
ARMCI memory necessary for remote communication.

It should be noted that the need for the Chasm ateagriptor library will be
reduced somewhat once compiler vendors have implemetite Fortran 2003
standard [8] Fortran 2003 contains standard mechanisms forojpgeating with C
that allow Fortran array pointers to be associated miémory allocated from C. In
addition, a modified version of the Chasm, array-dptar interface has been
accepted by the Fortran J3 committee for possiblausion in the next Fortran
standard. This would then allow the Fortran intexfadntroduced in the previous
section, to be used in a language standard way, witadditional stub or skeleton
code needed. Until this time, either Chasm or Forg@03 compilers (with slightly
modified Fortran stub code) will be needed.

ARMCI

The Aggregate Remote Memory Copy Interface (ARMB])is a portable RMA
communication library. It has been used for implenmgntistributed array libraries
such as Global Arrays, other communication libraries saglGeneralized Portable
SHMEM [10], and compiler run-time systems such as PCRGbAdA3] or the
portable Co-Array Fortran compiler at Rice Universit]. ARMCI offers an
extensive set of functionality in the area of RMAnrtaunication: 1) data transfer
operations; 2) atomic operations; 3) memory manageraadt synchronization
operations; and 4) locks. In scientific computing, aapions often require transfers
of noncontiguous data that corresponds to fragmentswdfidimensional arrays,
sparse matrices, or other more complex data struct¥éith remote memory
communication APIs that support only contiguous dedasfers, it is necessary to
transfer noncontiguous data using multiple commurmpatperations. This often
leads to inefficient network utilization and invosséncreased overhead. ARMCI,
however, offers explicit noncontiguous data intezfacstrided and generalized 1/0
vector that allow description of the data layouttkat it could, in principle, be
transferred in a single message. Of course, the effeess of actual transfers
depends on the ability of underlying networks tol déigh noncontiguous data (e.g.,
scatter/gather operations). However, even when sftgtteer operations are not
supported by the network, the ARMCI strided and eoperations take advantage of
the information -- for example, at the level of datcking/unpacking -- so that the
overall number of messages and network packets is redlibe strided interfaces
are important for Fortran 95 applications that us#idimensional arrays.



Fortran 95 Interfaces

The C side of the implementation is composed of 10 tioms. Four of the
functions are administrative functions for initialigi Fortran array descriptor
information, cleaning up, terminating, and synchrimgjizhat take no arguments. The
other six are functions for allocating Fortran 9Fags that the ARMCI data
movement routines can handle, blockipgt and get operations for the data
movement, their nonblocking analogs, and a functifree the allocated deferred
shape arrays.

These functions assume the following Fortran callingvention. When calling
routines with the deferred shape arrays (allocataddeprguments, each deferred
shape array argument contributes two addresses tatiled argument list. The first
is the data address of the first element of the amalyis in order specified in the
arguments of the Fortran call/function reference. $aeond is the address of the
dope vector describing the deferred shape array saupdaced after the end of the
arguments listed in the Fortran call or function refee. Routines with more than
one deferred shape array have all of the addresshe dbpe vectors concatenated at
the end of the argument list appearing in the sataéve order as the corresponding
deferred shape array in the Fortran argumentTistsupport symmetric data objects
even on clusters with virtual memory nodes, we alloeatza array memory (in
addition to the user specific portion) to store arpmynters on the remote nodes.
When user specifies pointer to the local instancénefRortran 95 array, we access
the appropriate pointer for the specified processdrpass the required information
to ARMCI put/get calls.

On the Fortran 95 side of the interface there areesponding routines to allocate,
put, get (blocking/nonblocking) and free array memdigrtran 95 does not have the
notion of a generic pointer type, the equivalentadivoid *) in C. Each pointer in
fortran must point to an array of specified type amdetision (number of indices
used to reference elements in the array). Moduleegires are used to overload the
C functionality of void *, giving a similar interéz on the Fortran side where the user
does not have to use a different function name forgu8RMCI routines on different
data types. Six types of elementary data are suppfoteshe to seven dimensions
yielding 42 Fortran routines for each correspondirfgriction @llocate free put, get
and nonblockingut andged). The six Fortran data types supported are fourgiv)
eight- (I8) byte integers, four- (R4) and eight- {R§te floating point numbers and
eight (C4) and sixteen (C8) byte complex numbers.félewing parameters provide
a portable shorthand for defining these types aadaund in the definekind.Fortran
95 file:
nodul e defi neki nd
i nteger, paraneter :: |4
nt eger, paraneter :: 18
nteger, paraneter ::
nt eger, parameter
nt eger, paraneter
nteger, paraneter ::
end nodul e defi nekind

SELECTED | NT_KI NDY( 9)
SELECTED_| NT_KI NDY 16)
SELECTED_REAL_KI ND( 5)
SELECTED REAL_KI ND( 12)
SELECTED_REAL_KI NI 5)
SELECTED REAL_KI N 12)

BRER



For each operation in each of the 42 flavors,dégi neki nd module is included
and the appropriate type and dimension argumentseatfardd in an interface block
to the generic C routine.

Sample RM A code using Fortran 95 interfaces

Below is a sample code snippet that allocates a caifil®X50 arrays of integers,
src_arr anddst _arr, and does a put operation from one to another. Téreags
are first allocated with Malloc_fa interface andrtlse& c anddst slice information is
filled up before doing the put communication.

i nteger (kind=4),pointer::src_arr(:,:),dst_arr(:,:)

type(Slice_fa) :: src_sl,dst_sl
integer :: 1b(2), ub(2), ierr
Ib(:) =1
ub(:) = 50

call Mlloc_fa(src_arr,|b,ub,ierr)
if (ierr .ne. 0) call myerror()
call Malloc_fa(dst_arr,|b,ub,ierr)
if (ierr .ne. 0) call myerror()
src_sl%o(:) 1

src_sl%i(:) = 25

src_sl%tride(:) = 2

dst_sl%o(:) = 25

dst_sl%i(:) = 50

dst_sl %tride(:) = 2

Put _fa(src_arr,drc_sl,dst_arr,dst_sl,dst_proc,ierr)

3.Experimental Evaluation

We measured the latency and bandwidth of the For@&rnRMA calls with
microbenchmarks. We also ported the NAS MG benchnatkse Fortran 95. The
experimental evaluation was carried out on a 24-rthdé processor Intel Itanium2
1GHz cluster interconnected with Myrcom’s GM interseat [7]. The cluster was
running Linux version 2.4.20 operating system. We ubedGM dual port E cards,
GM 2.1.4 and MPICH 1.2.5..12. For this test, wedulsgel IFC Fortran 7.0 compilers
and the 2.96 version of the GNU C compiler. We alseduARMCI 1.1 and Chasm
1.1.0 for the implementation.

Microbenchmarks

We measured the latency and bandwidth of FortrarRBBA interfaces with a
microbenchmark that does consecutive Put and Gettapesdrom different memory
locations and averages the time taken for each dperafhis is a simple
microbenchmark that shows the bandwidth and latesfcyhe Fortran 95 RMA
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Figure 1- Left: Bandwidth of a contiguous Fortrém(fabled F95 in the figur
Put_fa compared to ARMCI put. Right: Bandwidth bk tFortran 95Get_f¢
compared to ARMCI Get operation.
interfaces. In addition we also used a similar miermthhmark to measure the
bandwidth and latency of ARMCI Get and Put operetiin order to measure the
overhead from using Fortran 95 interfaces that iredlwnterface mapping and all the
dope vector manipulations. The bandwidth of the @&w®d Put operations for the
Fortran 95 RMA interfaces is shown in Figure 1. Tigure also includes the
bandwidth of the corresponding ARMCI Put and Getlscallhe overhead is
independent of the message size and it is relatéebtoast of duplicating dope vector
through Chasm that includes calloc system call. Basethese findings, the next
version of Chasm will include an alternative mechanismaccessing some of the
information stored in the dope vector that will beeséd on portable macros rather
than duplication of the dope vectorThe asymptotic b/w in the above
microbenchmarks is consistent with bw numbers of Myni&dM [7].

NAS MG Benchmark

The Numerical Aerodynamic Simulation (NAS) paralbeinchmarks (NPB) are a
set of programs designed at NASA. Our starting point Wi3B 2.4 [4]
implementation written in MPI and distributed by NAS#e modified it to be
compiled as a Fortran 95 file. We replaced MPI callth the Fortran 95 non-
blocking RMA interfaces. In addition to the mere esg@ment of the point-to-point
message passing communications part of the current mgsasgjag version of MG
NAS kernels, an additional set of communication ésffwere used to better utilize
the one-sided nature of the RMA interfaces. Figuethows the performance of NAS
Fortran 95 MG version written with Fortran 95 RMAdrface and is compared to the
original MPI implementation of NAS which has been pied with Intel Fortran 95
compiler as an Fortran 95 file. Despite the overheadran 95 interfaces involve,,
the RMA Fortran 95 RMA interface version of the M@nehmark outperforms the
MPI version of NAS MG benchmark for Class B and Clasan@ performs in par
with the MPI version for the Class A version of thendlemarks. The performance
gains are contributed to the increased asynchigro€ithe RMA model as compared
to the two-sided message passing implementation of th& NIRB MG benchmark.
Table 1 shows the percentage improvement shown bldttean 95 RMA interface
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Figure 2- Fortran 95 (labled as F95 in the figurdj/Rinterfaces vs.MPI
implementation of NAS MG benchmark for Class A, B &d

implementation of NAS MG over the standard MPI impletagon of NAS MG. Up
to 30% improvement can be seen.

4. Conclusionsand Future Work

The current paper described how symmetric data abgad high-level array oriented
RMA interfaces can be implemented for Fortran 95 iapfbns. The proposed
approach leads to simple yet efficient code, as detrated in the context of the NAS
NPG Multi-Grid benchmark. In the process of developimg interface we identified
sources of overhead involved in accessing elements ofidpe vector through
Chasm. The next version of Chasm will address them byiding macros for direct
access to the information stored in the dope vectiuired by these interfaces. Our
future work in addition to these performance optiriazes will include performance
comparisons with the Co-Array Fortran code on thayCX1l where the native Co-
Array compiler is available as well as to the Rice piben on Linux clusters.

The microbenchmarks show the bandwidth of the For®&n interfaces. The
implementation of NAS MG using these Fortran 95 RNM#feifaces outperforms the

%improvement %improvement
NPROC over MPI-Class B over MPI-Class C
2 2.0 10.8
4 30.1 19.9
8 5.6 8.3
16 4.4 18.1
32 12.2 21.4

Table -1 percentage improvement over the MPI versidtAs
MG of the MG implementation using Fortran 95 RMAeiriace



10

MPI version of the benchmark demonstrating that e-lrlocking one-sided nature
of RMA is preserved and utilized despite the overhaaeblved in pointer
calculations and dope vector manipulations.
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