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TensorFlow Threading



Introduction

« TensorFlow is a popular deep i
learning framework from Google.

« Applications in many areas

Image recognition Speech recognition NLP MiniGo Magenta — making art
and music

All images taken from public domain or Pexels.com. TensorFlow image can be claimed as property of others.




TensorFlow supports

O

Raspberry Pi*

All images taken from public domain or Pexels.com. TPU image taken from cloud.google.com.




Model execution: example

import tensorflow as tf o °

tf.Variable(tf.zeros([100]))
tf.Variable(tf.ones([100])) .
a+b —_— —_— —_— |-, -
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= tf.Session() \\\ l//

s.run(tf.initialize_all variables()) e (%)
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result = s.run([e])

Currently, TensorFlow has 2 CPU backends: Eigen (default), and MKL (Intel-optimized)




TensorFlow graph execution

° ° * Threading model offers an ability to exploit
graph-level parallelism for execution.
c () ) * Threading model parameters
\ ,/ 1. inter_op_parallelism_threads
e (™) 2. intra_op_parallelism_threads

3. OMP_NUM_THREADS

Inter_o Node execution order
In TensorFlow, performance of a model on

1 a,bcde CPU backend relies on the threading model
2 [a, b], [c, d], e parameters.
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Getting better TensorFlow performance on Intel
Xeon CPU (with MKL backend)

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANCE

TRAINING THROUGHPUT INFERENCE THROUGHPUT
System configeraton
CPU Theead(s) per core. 2 Corefs) per sochet 28
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Unoptimized TensorFlow may not
exploit the best performance from
Intel CPUs.

Source - https://www.intel.com/content/www/us/en/events/ai/devcon.html




TensorFlow performance guide for CPU devices
(applicable to MKL and Eigen backends)

The two configurations listed below are used to optimize CPU performance by adjusting the thread pools.

* intra_op_parallelism_threads : Nodes that can use multiple threads to paralielize their execution will schedule
the individual pieces into this pool

e inter_op_parallelism_threads : All ready nodes are scheduled in this pool

These configurations are set via the tf _ConfigProto and passedto tf . Session Inthe config attribute as shown in
the snippet below. For both configuration options, if they are unset or set to 0, will default to the number of logical CPU
cores. Testing has shown that the default is effective for systems ranging from one CPU with 4 cores to multiple CPUs
with 70+ combined logical cores. A common alternative optimization is to set the number of threads in both pools equal
to the number of physical cores rather than logical cores




$1M question is ...

Q: How easy it is to find
parameter values for
best performance?

A: Unfortunately, it is
not easy!

Image taken from commons.wikimedia.org. Created by author Idea SV



Why it is not easy ..

. Exhaustive sweep does not
i work for exponentially-

growing search space.

Time

* Manual search does not
explore search space
systematically.

Manual
search

Ability to find optimal settings that
give the best performance

v

Can there be a tool that can
1) find better parameter values than manual search

2) and find the values quickly?




TensorTuner: contributions

- First attempt to address the problem

- TensorTuner could find better parameter values

- That deliver 1.5% to 123% (2X) improved
performance over the best-known

. 2X — 10X more efficiently than exhaustive sweep




Problem formulation

« Formulated as a function maximization problem.
« Performance f can be defined as:

s = fc(Z)
 Where

» (represents set of constants (e.g., input neural network with hyper-
parameters, input dataset, hardware, software configuration, etc)

» s is performance score (e.g., imgs/sec for CNNs)

« X is the set of params that we want to tune




Design

Configuration of
Parameter Search Space

TensorTuner

Nelder-Mead
Simplex




Evaluation: criteria

1. Tuning Quality
= Measures ability of the algorithm to find optimum setting
= Measured as f(tgggested)

- Compare with f(tbest-known)
— comes from Intel Al blogs and
— running Eigen backend the with default settings

2. Tuning Efficiency
= Measures ability of the algorithm to converge to optimum quickly
= Measured as % of the parameter space explored




Evaluation: setup

« Xeon 8180, Cent OS, GCC-6.3,
Python-2.7.5

« Eigen backend: TF-1.7 wheel

« MKL backend: built wheel from TF
master (sometime in March)

« Tensorflow tf_cnn_benchmarks

Backend Model Batch | Data
Size | Format
MKL CPU | ResNet-50 128 | NCHW
MKL CPU | Inception3 64 | NCHW
MKL CPU | VGG16 128 | NCHW
MKL CPU | VGG11 128 | NCHW
MKL CPU | GoogLeNet 96 | NCHW
Eigen CPU | ResNet-50 128 | NHWC
Eigen CPU | Inception3 64 | NHWC
Eigen CPU | VGG16 128 | NHWC
Eigen CPU | VGGI1 128 | NHWC
Eigen CPU | GoogLeNet 96 | NHWC

Fig. 5: Models used for evaluation

inter__ intra__ OMP _
Backend | op op NUM_
THREADS
MKL [1, 4, 1] | [14, 56, 7] | [14, 56, 7]
Eigen 1,4, 1] | [14, 56, 7] | -

Fig. 7: [Lower bound, upper bound, step size] for
parameter search




Evaluation: tuning quality with Eigen backend

é TensorTuner Tuning Quality for Eigen Backend (Training) TensorTuner Tuning Quality for Eigen Backend (Inference)
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Evaluation: Tuning quality for MKL backend

TensorTuner Tuning Quality for MKL Backend (Training) TensorTuner Tuning Quality for MKL Backend (Inference)
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Improvement (in %) Over Best-Known Performanc

Models with (Inter_op, Intra_op, OMP_NUM_THREADS) Found by TensorTuner Models with (Inter_op, Intra_op, OMP_NUM_THREADS) Found by TensorTuner

TensorTuner suggested settings perform better than default settings on MKL backend.
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Analysis: 123% better performance with settings
found by TensorTuner
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Analysis: 123% better performance with settings
found by TensorTuner
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Evaluation: Tuning efficiency
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Related work

* Optimization algorithms

* Gradient-based optimizers (gradient descent, Newton’s method, BFGS method)

* Gradient-free optimizers (Nelder-Mead, Simulated Annealing, Genetic Algorithms)
* Auto-tuning in HPC

* David H Bailey, et al. Performance tuning of scientific applications

* Auto-tuning matrix multiplication

* In Machine Learning
* Hyper-parameter tuning: HyperOpt, MOE, AutoWeka, HyperTune

* Automatically generate efficient kernels (Tensor Comprehension, TVM)




Future work

« Compare Nelder-Mead algorithm
with other gradient-free optimization
algorithms

Explore convergence behavior of
Nelder-Mead for large number of
parameters

« Applicability to wider
models/workloads




Conclusion

« Existing approaches for TensorFlow parameter tuning are either
expensive or may leave performance on table.

« TensorTuner could suggest better parameter values
« That improve CPU backend performance from 2% to 123%

 Efficiently by exploring subset of the search space (2X — 10X more
efficiently)




Thank you!




