
Auto-tuning TensorFlow Threading
Model for CPU Backend

Niranjan Hasabnis
Intel

HPCaML workshop, 2019. https://arxiv.org/abs/1812.01665

2

Introduction

• TensorFlow is a popular deep
learning framework from Google.

• Applications in many areas

Image recognition Speech recognition NLP MiniGo Magenta – making art
and music

All images taken from public domain or Pexels.com. TensorFlow image can be claimed as property of others.

3

TensorFlow supports

CPU GPU TPU*

All images taken from public domain or Pexels.com. TPU image taken from cloud.google.com.

Raspberry Pi*

5

Model execution: example

import tensorflow as tf

a = tf.Variable(tf.zeros([100]))
b = tf.Variable(tf.ones([100]))
c = a + b
d = a - b
e = c * d

s = tf.Session()
s.run(tf.initialize_all_variables())

result = s.run([e])

[-1, -1,
-1, …]

Currently, TensorFlow has 2 CPU backends: Eigen (default), and MKL (Intel-optimized)

6

TensorFlow graph execution

• Threading model offers an ability to exploit
graph-level parallelism for execution.

• Threading model parameters

1. inter_op_parallelism_threads

2. intra_op_parallelism_threads

3. OMP_NUM_THREADS

In TensorFlow, performance of a model on
CPU backend relies on the threading model
parameters.

Inter_op Node execution order

a, b, c, d, e

[a, b], [c, d], e

1

2

7

Getting better TensorFlow performance on Intel
Xeon CPU (with MKL backend)

Source - https://www.intel.com/content/www/us/en/events/ai/devcon.html

8

TensorFlow performance guide for CPU devices
(applicable to MKL and Eigen backends)

9

$1M question is …

Q: How easy it is to find
parameter values for
best performance?

A: Unfortunately, it is
not easy!

Image taken from commons.wikimedia.org. Created by author Idea SV

10

Why it is not easy ..

• Exhaustive sweep does not
work for exponentially-
growing search space.

• Manual search does not
explore search space
systematically.

Ability to find optimal settings that
give the best performance

Ti
m

e

Exhaustive
sweep

Manual
search

Can there be a tool that can
1) find better parameter values than manual search
2) and find the values quickly?

11

TensorTuner: contributions

• First attempt to address the problem

• TensorTuner could find better parameter values

• That deliver 1.5% to 123% (2X) improved
performance over the best-known

• 2X – 10X more efficiently than exhaustive sweep

12

Problem formulation

• Formulated as a function maximization problem.

• Performance ! can be defined as:

! = "!(#)

• Where
• " represents set of constants (e.g., input neural network with hyper-

parameters, input dataset, hardware, software configuration, etc)

• # is performance score (e.g., imgs/sec for CNNs)

• $ is the set of params that we want to tune

13

Design

14

Evaluation: criteria

1. Tuning Quality

▪ Measures ability of the algorithm to find optimum setting
▪ Measured as !("suggested)
▪ Compare with !("best-known)

– comes from Intel AI blogs and
– running Eigen backend the with default settings

2. Tuning Efficiency

▪ Measures ability of the algorithm to converge to optimum quickly
▪ Measured as % of the parameter space explored

15

Evaluation: setup

• Xeon 8180, Cent OS, GCC-6.3,
Python-2.7.5

• Eigen backend: TF-1.7 wheel

• MKL backend: built wheel from TF
master (sometime in March)

• Tensorflow tf_cnn_benchmarks

16

Evaluation: tuning quality with Eigen backend

TensorTuner suggested settings perform better than default settings on Eigen backend.

17

Evaluation: Tuning quality for MKL backend

TensorTuner suggested settings perform better than default settings on MKL backend.

18

Analysis: 123% better performance with settings
found by TensorTuner

Default settings in
TensorFlow (112,112) lead to
thread over-subscription
issue for VGG11 training
case.

TensorTuner suggested
settings (4,49) reduced
over-subscription issue.

19

Analysis: 123% better performance with settings
found by TensorTuner

With the default settings With the settings suggested by TensorTuner

20

Evaluation: Tuning efficiency

TensorTuner is able to find better-performing setting by pruning large search spaces.

21

Related work

• Optimization algorithms

• Gradient-based optimizers (gradient descent, Newton’s method, BFGS method)

• Gradient-free optimizers (Nelder-Mead, Simulated Annealing, Genetic Algorithms)

• Auto-tuning in HPC

• David H Bailey, et al. Performance tuning of scientific applications

• Auto-tuning matrix multiplication

• In Machine Learning

• Hyper-parameter tuning: HyperOpt, MOE, AutoWeka, HyperTune

• Automatically generate efficient kernels (Tensor Comprehension, TVM)

22

Future work

• Compare Nelder-Mead algorithm
with other gradient-free optimization
algorithms

• Explore convergence behavior of
Nelder-Mead for large number of
parameters

• Applicability to wider
models/workloads

23

Conclusion

• Existing approaches for TensorFlow parameter tuning are either
expensive or may leave performance on table.

• TensorTuner could suggest better parameter values

• That improve CPU backend performance from 2% to 123%

• Efficiently by exploring subset of the search space (2X – 10X more
efficiently)

24

Thank you!

