
Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 1 

Application-Driven Co-Design 
James Belak 

Deputy Director, belak@llnl.gov 
Exascale Co-Design Center for Materials in Extreme Environments 

Modeling and Simulations of Exascale Systems and Applications 
9-10 August 02012 

Seattle 

“(Application driven) co-design is the process where scientific problem requirements influence 
computer architecture design, and technology constraints inform formulation and design of 
algorithms and software.”                                                                                          –Bill Harrod (DOE) 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

LLNL-PRES-XXXXXX 

“Algorithm research has 
been driven by hard to 
use machines.” 
–Rob Schreiber (HP Labs) 

 

“People who are serious about 
software should make their 
own hardware.” 
–Alan Kay (Xerox PARC) 

 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 2 

Creation of a functional exascale simulation environment requires our 
co-design process to be adaptive, iterative, and lightweight – i.e. agile 

Preparation: 
Science and Mission 
Stakeholder Buy-in 
Assemble Team 
Implementation Plan 
Development Plan 

Cycle Artifacts: 
 R&D Backlog 

 Algorithm and 
 Model Implementation 

 Proxy Applications 
 Architecture 

Evaluation 

Co-Design 
Agile 

Development 
Cycle Incorporated 

Design 
Elements 

Algorithm 
Development 

Trade-off 
Analysis 

Impact 
Feedback 

Code 
Design 

Exascale Community: 
Release Artifacts: 
HW Requirements 

SW Constraints 
Proxy Applications 

Documentation 

Software Development: 
ASCR X-stack, ASC CSSE 

Data/Analysis 

Hardware Development: 
Vendors, Fastforward, ASCR 

Advanced Architecture 

Code 
Implementation 

Release to 
Exascale 

Community 

Release n 

Domain Science: 
Domain Workload 
Physical Models 

Algorithms 
Simulations 

Team Roles: 
Cycle Master: Co-design PI 
 Project Team: Labs, Univ’s 

 Stakeholders: ASCR, ASC, Vendors 
 Customers: Scientists, HW+SW 

Developers 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 3 

DOE/ASCR Application Co-design Centers 

CESAR: Center for Exascale Simulation of Advanced Reactors 
Director: Robert Rosner (ANL/UChicago) rrosner@ci.uchicago.edu 
Deputy Director: Andrew Siegel (ANL) siegela@mcs.anl.gov 
Enable a coupled, next-generation nuclear reactor core simulation tool capable of 
efficient execution on exascale computing platforms. 

Combustion: Combustion Exascale Co-Design Center  
Director: Jacqueline Chen (SNL) jhchen@sandia.gov 
Deputy Director: John Bell (LBNL) jbbell@lbl.gov 
Enable combustion scientists to perform first principles direct numerical simulations 
with sufficient physics fidelity to answer fundamental questions to meet pollutant 
and greenhouse gas emissions targets, reduce dependence on petroleum and 
promote economic competitiveness. 

ExMatEx: Exascale Co-Design Center for Materials in Extreme Environments 
Director: Tim Germann (LANL) germann2@lanl.gov 
Deputy Director: Jim Belak (LLNL) belak@llnl.gov 
Establish the interrelationship between software and hardware required for materials 
simulation at the exascale while developing a multiphysics simulation framework for 
modeling materials subjected to extreme mechanical and radiation environments.  



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 4 

ExMatEx Co-Design Project Goals 

• Our goal is to establish the interrelationship 
between hardware, middleware (software stack), 
programming models, and algorithms required to 
enable a productive exascale environment for 
multiphysics simulations of materials in extreme 
mechanical and radiation environments. 

• We will exploit, rather than avoid, the greatly 
increased levels of concurrency, heterogeneity, and 
flop/byte ratios on the upcoming exascale platforms.  

• This task-based approach leverages the extensive concurrency and heterogeneity 
expected at exascale while enabling fault tolerance within applications.  

• The programming models and approaches developed to achieve this will be broadly 
applicable to a variety of multiscale, multiphysics applications, including astrophysics, 
climate and weather prediction, structural engineering, plasma physics, and radiation 
hydrodynamics. 

 

 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 5 

Code: 
Qbox/LATTE 
 
Motif: Particles 
and 
wavefunctions, 
plane wave DFT, 
ScaLAPACK, 
BLACS, and 
custom parallel 
3D FFTs 
 
Prog. Model: MPI 
+ CUBLAS/CUDA 

Code: 
SPaSM/ddcMD/C
oMD 
 
Motif: Particles, 
explicit time 
integration, 
neighbor and 
linked lists, 
dynamic load 
balancing, parity 
error recovery, 
and in situ 
visualization 
 
Prog. Model: MPI 
+ Threads 

Code: SEAKMC 
 
 
Motif: Particles 
and defects, 
explicit time 
integration, 
neighbor and 
linked lists, and in 
situ visualization 
 
Prog. Model: MPI 
+ Threads 

Code: AMPE/GL 
 
 
Motif: Regular 
and adaptive 
grids, implicit 
time integration, 
real-space and 
spectral methods, 
complex order 
parameter 
 
Prog. Model: MPI 

Code: ParaDiS 
 
 
Motif: 
“segments” 
Regular mesh, 
implicit time 
integration, fast 
multipole method 
 
Prog. Model: MPI 

Code: VP-FFT 
 
 
Motif: Regular 
grids, tensor 
arithmetic, 
meshless image 
processing, 
implicit time 
integration, 3D 
FFTs. 
 
Prog. Model: MPI 
+ Threads 

Code: 
ALE3D/LULESH 
 
Motif: Regular 
and irregular 
grids, explicit and 
implicit time 
integration. 
 
Prog. Model: MPI 
+ Threads 
 

Ab-initio MD Long-time Phase Field Dislocation Crystal Continuum 

Inter-atomic 
forces, EOS, 

excited states 

Defects and 
interfaces, 
nucleation 

Defects and 
defect structures 

Meso-scale 
multi-phase 

evolution 

Meso-scale 
strength 

Meso-scale 
material 
response 

Macro-scale 
material 
response 

Exascale is about better Physics Fidelity: Engineering assessment of 
material behavior is limited by physics fidelity 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 6 

Agile proxy application development 

• Petascale single-scale SPMD and scale-bridging MPMD proxy apps will be 
used to explore algorithm and programming model design space with 
domain experts, hardware architects and system software developers. 

• Proxy apps communicate the application workload to the hardware 
architects and system software developers, and are used in 
models/simulators/emulators to assess performance, power, and 
resiliency. 

• These proxy applications will not be "toy models", but will realistically 
encapsulate the workload, data flow and mathematical algorithms of the 
full applications.   

Co-Design	Agile	
Development	

Cycle	

HW+SW	
Requirements	from	
Exascale	Community	

Incorporate	
Feedback	into	
Applica on	
Design	

Release	App	
Requirements	to	

Exascale	
Community	

Physical	models,	
scale-bridging	
Algorithms,	and	

UQ	

Trade-off	Analysis:	
Performance,	Price,	
Power	and	Resiliency	

(P3R)	

Applica on	
Workload:	
proxy	apps,	
kernels	and		
Data	flow	

Programming	Models	
(Algorithm	

Implementa on)	

Resource/Task		
Management	

Scalable	tools,	
libraries,	

visualiza on	and	
analysis	

Exascale	Hardware	
Representa on:	
Simulators,	
Complexity		



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 7 

Proxy applications communicate the computational workload of “real” 
applications into the co-design process 

• Initial Proxy Apps represent the computational work as we expose 
it on petascale systems today 

• Proxy apps will evolve through co-design to represent the 
computational work as it must be exposed to exascale systems 

• Initial Materials Science Proxy Suite: 

– CoMD: Co-designed molecular dynamics, exploration of exascale data layout 
and programming models (what works at exascale?) (jamal@lanl.gov) 

– LULESH: Shock hydrodynamics portion of ALE3D, originally developed for 
DARPA UHPC, coarse scale app for scale bridging (keasler1@llnl.gov) 

– VPFFT: Microstructure sensitive crystal plasticity, initial fine scale app for scale 
bridging (li31@llnl.gov) 

– MTREE: Exploration of exascale data layout for scale bridging adaptive 
sampling (dorr1@llnl) 

David Richards (richards12@llnl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 8 

Molecular Dynamics (CoMD) 

Interaction potentials determine both the physics and computer science 

– Complex potentials are more accurate, but can require many more floating 
point operations. 

– Locality of potential informs parallelization strategy, e.g. short-ranged potentials 
require only point to point communication. 

Molecular dynamics:  particles interact via 
explicit interatomic potentials and evolve 
in time according to Newton’s equations of 
motion: 

  

˙ r i = pi /mi

  

˙ p i = fi

Jamal Mohd-Yusof (jamal@lanl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 9 

~ 20 atoms in each box 

 each atom interacts with 540 other atoms 

 However, only ~70 atoms lie within cutoff 

 Lots of wasted work 

 We need a means of rejecting atoms efficiently even 
within this reduced set  

How are forces calculated in a parallel MD code? 

Halo Region 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 10 

Design requirements: 

• Run efficiently on arbitrary 
number of processors 

• Excellent weak scaling to extend 
size of simulation 

• Excellent strong scaling to extend 
MD time scale 

Solution: 

• Particle-based domain decomposition - processors own 
particles, not regions - allows decomposition to persist 
through atom movement 

• Maintain minimum communication list for given 
decomposition - allows extended range of  “interaction” 

• Arbitrary domain shape - allows minimal surface to 
volume ratio for communication 

Domain decomposition strategy for ddcMD 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 11 

Embedded Scale-Bridging Algorithms 

• To achieve this, we are developing a UQ-
driven adaptive physics refinement 
approach. 
 

• Coarse-scale simulations dynamically 
spawn tightly coupled and self-consistent 
fine-scale simulations as needed. 
 

• This task-based approach naturally maps to 
exascale heterogeneity, concurrency, and 
resiliency issues. 

 

Moving refinement window

Macroscale

Velocity

MesoscaleMicroscale

• Our goal is to introduce more detailed physics into computational 
materials science applications in a way which escapes the traditional 
synchronous SPMD paradigm and exploits the heterogeneity expected 
in exascale hardware.  

 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 12 

Direct multi-scale embedding requires full utilization of exascale 
concurrency and locality 

FSMs 

• Brute force multi-scale coupling: Full fine scale 
model (FSM, e.g. a crystal plasticity model) run 
for every zone & time step of coarse scale 
mode (CSM, e.g. an ALE code) 

• Adaptive Sampling:  
– Save FSM results in database 

– Before running another FSM, check database for 
FSM results similar enough to those needed that 
interpolation or extrapolation suffices 

– Only run full FSM when results in database not 
close enough 

CSM 

Ref: Barton et.al, ‘A call to arms for task parallelism in multi-scale materials modeling,’ Int. J. Numer. Meth. Engng 2011; 86:744–764 

• Heterogeneous, hierarchical MPMD algorithms map naturally to anticipated 
heterogeneous, hierarchical architectures 

• Escape the traditional bulk synchronous SPMD paradigm, improve scalability and 
reduce scheduling 

• Task-based MPMD approach leverages concurrency and heterogeneity at exascale while 
enabling novel data models, power management, and fault tolerance strategies 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 13 

Sedov blast wave problem 

U
Dt

D 
 



p
Dt

UD







   

De

Dt
= -p

DV

Dt

Conservation of 

mass 

Conservation of 

momentum 

Conservation of 

energy 

• Represents coarse scale aspect of our scale bridging approach 

• Initially created for DARPA UHPC work, now under LLNL LDRD, Tri-Lab mini-
Apps 

• 3k lines of code, including mesh and boundary conditions 

– Lagrangian hydrodynamics 

– Single simplified material model 

Coarse Scale: LULESH (Livermore Unstructured Lagrangian Explicit 
Shock Hydrodynamics) 

Jeff Keasler (keasler1@llnl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 14 

• Given input microstructure and applied deformation, compute full-field response in 
the form of stress states and anisotropic lattice reorientation due to polycrystal 
plasticity. 

• Solve the set of non-linear 
  constitutive equations  

iteratively for each grid point. 

• Determine admissible stress and strain rate at each grid point that satisfies the 
equilibrium and compatibility condition. 

• Spatial variation is crucial to prediction of failure, such as crack initiation and void 
nucleation. 

Fine Scale: VP-FFT (Viscoplastic Fast Fourier Transform) 

Simulation Volume 

Macroscopic 

System 
s '(x) calculated at 

each grid point 

R. A. Lebensohn, Acta Mater. 49, 2723-2737 (2001); 56, 3914-3926 (2008); A.D. Rollett et al., MSMSE, 18 074005 (2010). 

Microstructure 

e x( ) = go ms x( )
s

å
ms x( ) : ¢s x( )

t o
s x( )

æ

è
çç

ö

ø
÷÷

n

Frankie Lee (lee31@llnl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 15 

The Adaptive Sampling (AS) proxy application enables the standalone 
evaluation of fine-scale response data management options, addressing 
questions such as: 

– How should the database be redistributed as the calculation proceeds?   
– Should the fine-scale model sometimes be re-evaluated anyway to avoid 

communication?   
– As different parts of the calculation “learn” the fine-scale response in 

their respective locales, how can that knowledge be shared globally?   
– What are the load balancing and scheduling consequences of the fact 

that some elements will be performing new fine-scale evaluations while 
others are (more quickly) obtaining the fine-scale response from the 
database? 

– Do existing programming models and system software provide sufficient 
capability to implement the “optimal” algorithm? 

– Can the the task-based programming model inherent to adaptive 
sampling enable new paradigms for resiliency? 

Bridging Scales: Adaptive Sampling proxy app 

Milo Dorr (dorr1@llnl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 16 

Iterations Actual (s) Pred. (s) Error (%) 

10 1.5060 1.6200 7.57 

20 2.9360 3.3771 15.02 

30 4.2480 5.2400 23.35 

40 5.9110 6.7500 14.19 

SST Micro simulating serial LULESH on an AMD A8 
2.90 GHz (2011) Core 

We need a predictive tool for mapping proxy apps to new architectures. 
How well does SST represent the machines on the floor today? 

Compute Level 
(Processor/GPU) 

Node Level 
(Multi-Device) 

Machine Level 
(Interconnect) 

SST  
Micro-Scale 

SST  
Macro-Scale 

SST  
Meso-Scale 

(Mixed Micro/Macro) 

Cores Actual (s) Prediction (s) Error (%) 

64 105.95 96.57 8.86 

125 106.23 97.40 8.32 

216 108.74 98.32 9.59 

343 106.46 99.52 6.52 

512 107.04 102.97 3.80 

729 112.44 99.71 11.32 

1000 118.44 98.12 17.16 

1331 107.66 96.65 10.22 

SST Macro simulating LULESH MPI on a uBG/L 
(VN-mode, 500 iterations, 453 weak scaled) 

Lessons learned: 

SST is under active development and 
needs more development resources, 
it has not been fully validated. 

SST simulations are themselves 
computationally intensive 

10% error should be expected, Sims 
should be thought of as exploration 
of space, e.g. “what if?” kind of 
questions 

SST needs better problem 
specifications 

Compilers are a large source of 
variability 

Si Hammond (sdhammo@sandia.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 17 

Challenges facing SST 

• Simulations are complex – need to replicate interactions within 
network, switches, cores, memory, etc. 

– Can take significant time to simulate large machines and scaling 
complexity is currently not well understood 

– Validating interaction of components is very challenging due to 
reproducibility and limited introspection in real systems 

• Simulation of future architectures will require new components 

– GPU simulators currently being added to SST 

– MIC simulator will require new work 

– Novel memory architectures are beginning to be worked on 

– Working with vendors to introduce novel network architectures 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 18 

• How well does the proxy app suite represent the workload of the parent app? 

• What really is the computational workload of the parent app? That is, the current 
implementation in the current computational ecosystem. 

• Are these the right metrics to quantify the computational workload for an exascale computer? 
If not what are the right metrics? 

– Fraction of peak performance 

– Data movement, during computation, across the network, between packages 

– Percentage of floating point that are SIMD 

– Working set size 

– Checkpoint fraction, frequency, and size 

• Time to checkpoint 

• Parallel FS (one big versus lots of little) 

– Flops / byte and flops / load 

– Integer / Floating point fraction 

– Cache reuse and utilization 

– TLB utilization 

– Message volume, frequency and size 

• MPI traffic, topology, hop distance, comm. / compute %, pending messages 

– Synchronization (network contention) and wait time 

– Metric for inherent quantity of application parallelism, threats / HW core 

– How well does the code scale (both weak and strong scaling)? 

 

 

Baseline Metrics (Application Signatures / Idioms – I really miss Allan) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 19 

Metrics for computational work measure the behavior of the code 
within the computational ecosystem (e.g. HW/Stack/Compiler/etc.) 

• Pin is a tool that measures utilization of specific functional units in the 
processor (e.g. floating point operations) 

• Both ddcMD and LULESH are highly optimized codes. Pin analysis on entire 
code suite (see VG 2) in progress 

• Analysis for Intel Sandy Bridge processor with Intel compiler (cab) 

• LULESH percent vector utilization: Intel compiler = 8.7%, GCC = 0.15% (of FP) 

LAMMPS 
FP ops: 25% 
Int ops: 7% 
Mem ops: 50% 
Branching: 6% 
EA ops: 37% 
 

Barry Rountree (rountree4@llnl.gov) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 20 

• (Inter-Node) System-level. No shared memory.  Traditionally uses MPI to communicate 
data between disjoint address spaces. 

• (Intra-Node) Cores.  Modern nodes have multiple CPU cores.  The work needs to be 
distributed across them.  Old fashioned MPI is one option, but this increases surface to 
volume.  Solutions such as OpenMP that acknowledge the shared address space 
(possibly NUMA) among the cores are probably  preferred, especially in new code. 

• (Intra-Node) Threads.  Modern cores are supporting multiple hardware threads per 
node.  Among other things, multiple threads per core cover latencies since some 
threads can typically proceed while others are stalled.  Multiple threads may allow for 
better register usage, reduced pipeline stalls, etc. 

• (Intra-Node) SIMD.  We are now seeing quad-double SIMD units on intel and AMD 
hardware as well as BG/Q.  Memory access need to be aligned to allow vector registers 
to be filled efficiently.  Throwing away SIMD instructions is instantly giving away a 
factor of 4 in performance.  On GPUs, warps are rather like SIMD instructions since all 
threads in a warp execute the same instruction. 

• (Intra-Node) Functional Units.  BG/Q has both an integer and a floating point unit for 
each core.  It is the integer unit that loads data so in order to do useful processing you 
need to keep both active (to both load and process data).  Note that any thread can 
only issue an instruction to one of the units per cycle so at least two threads are 
needed to fully exploit the units.  It is also important to structure algorithms so that 
the use of the functional units is balanced. 

 

 Petascale (exascale) application developers must optimize for a complex 
parallel machine 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 21 

• Problem: Fault tolerance is a problem at 105 and will be a much bigger problem at 
108: 

– Solution: Application assisted error recovery 

• Parity error triggers exception handler (like FPE) 

• Application knows what memory is “important”  can catch exception and repair data 

– Exascale runtime will need to support task migration across nodes 

• Problem: Scaling (absolutely crucial for exascale) requires very very good load 
balancing: 

– Solution: Decomposition based on Computational Work 
• Particle-based domain decomposition - processors own particles, not regions - allows decomposition to 

persist through atom movement 

• Maintain minimum communication list for given decomposition - allows extended range of  “interaction” 

• Arbitrary domain shape - allows minimal surface to volume ratio for communication 

– Exascale: decomposition has to become dynamic and adaptive 

• Problem: HW specific algorithms are crucial for performance but limit portability 
– E.g. Linked cells map better to current petascale systems than neighbor lists 

– Ordering neighbors within a cell exposes SIMD parallelism 

• Problem: I/O does not work with too many files or one large file 
– Solution: Divide and concur, what is the optimal number of files? 

– Exascale: Dedicated checkpoint filesystem (flash?) 

 

What did we learn from creating petascale science apps and what does 
that mean for exascale? 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 22 

• Many, many-task coordination issues  
– Greater than one hundred million, more is different 
– Synchronization (essential for time evolution) 
– Stalls (keeping everyone working) 

• Better exposure into hardware details for the exascale 
application developer 

– Compiler Interface 
– Simulators+Emulators+Tools measure code/ecosystem 

metrics 
• Are we defining the right metrics? 

Productive Exascale Simulation requires the coordinated efforts of 
Domain Scientists, Computer Scientists and Hardware Developers 

• Application developers need a better way to express (code) the computational work of the 
application into the exascale computational ecosystem 

– Better programming models (e.g. domain specific languages) 
– Runtime support for heterogeneous multi-program, multi-data (MPMD) applications 

• The petascale science apps are NOT general apps. They have been painfully optimized for the 
petascale architecture by the app developer. How do we get exascale lessons learned into 
quotidian science applications (VASP, LAMMPs, …)?  

• The petascale codes already account for data movement, it is only going to get worse 
– Bandwidth to memory is scaling slower than compute 
– Memory access is dominating power 

• The exascale codes will need to learn to adaptively respond to the system 
– Fault tolerance, process difference, power management, … 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 23 

• Need to include Emulation in the suite of tools 
– Current petascale systems enable us to “emulate” the behavior of exascale systems 

• Need to extend the metric of “performance” to include resilience and power 
management 

– Both computer system resilience and application resilience 

– What does a programming model for “error” tolerance look like? 

– Fault measurements and fault models are leading to “error” models 
• Can you model the behavior of a system (application) with an error model? 

• What is an error model for silent errors? 

• How do you measure silent errors? Bill Carlson does it for integer apps! 

– Need a concerted project including HW, SW (stack) and APP 

• Need better tools to analyze applications (and application codes) for the 
computational work as presented to the hardware – application signature 

– A given app code presents app work as seen through a given programming model, as 
compiled by a given compiler, within a given runtime, … 

– Need better programming models and compilers to give the app developer both a better 
window into the hardware and a better way to expose the application work to the computer 
system 

• Need to go from developing tools, to asking “what ifs?” – trade off analysis – co-
design! 

• Scaling matters! Complexity matters! 

Questions and Challenges for Performance Modeling and Simulation 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 24 

System 

Software 

Proxy 

Apps 

Application 

Co-Design 

Hardware 

Co-Design 

Model for the Workflow of Co-design between Application Co-design 
Centers, Vendors, and the broader Research Community 

Computer 

Science 

Co-Design 

Vendor 

Analysis 
Sim Exp 

Proto HW 

Prog Models 

HW Simulator 

Tools 

Open 

Analysis 
Sim Exp 

Proto HW 

Prog Models 

HW Simulator 

Tools 

HW 

Design 

Stack 

Analysis 
Prog models 

Tools 

Compilers 

Runtime 

OS, I/O, ...  HW Constraints 

Domain 

Analysis 

SW Solutions 

System Design 

Application Design 

“(Application driven) co-design 

is the process where scientific 

problem requirements influence 

computer architecture design, 

and technology constraints 

inform formulation and design 

of algorithms and software.”                                                                                          

–Bill Harrod (DOE) 



Lawrence Livermore National Laboratory ASCR Modeling and Simulation 9-10 August 02012 25 

Thank you for your attention! 


