The State of Simulation Where We Are What is Wrong Where We Want to Be

Arun Rodrigues

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Where We Are

Major Architectural Simulation Challenges Are

- Multiple Objectives Increasing
 - –Performance used to be only criteria
 - –Now, Energy, cost, power, reliability, etc...

Scale & Complexity

- –Many system characteristics require detail to measure
- –Detailed simulation takes too long
- –Application complexity increasing
- Accuracy
 - -Systems more complex
 - –Vendors don't reveal necessary details

Major Architectural Simulation Challenges Are

s Increasing

- Multiple Objectives
 - –Performance used to be only criteria
 - –Now, Energy, cost, power, reliability, etc...

Scale & Complexity

- -Many system characteristics require detail to measure
- –Detailed simulation takes too long
- –Application complexity increasing
- Accuracy
 - -Systems more complex
 - –Vendors don't reveal necessary details

View of the Simulation Problem

Simulation & CoDesign

Tuesday, August 14, 2012

Sandia National Laboratorie

A (Very) Incomplete List...

- Sniper
- •Graphite
- CMPSim
- •SIMICS
- •SESC
- ASPEN
- •OMNet++
- •Phoenix
- •RAMP
- 106 •SimpleScalar[®] 10^{4} Simulation scope/paral •BigSim 10^{3}

107

10²

10¹

10⁰

•gem5

•FAST

- •SST
- Manifold
- •Zesto
- DRAMSim
- MacSim
- TwinCAM
- •CAPA

•MARSx86

- HotSpot
- Orion
- IntSim
- McPAT
- •PIN
- (at this point, I got tired)

NNS®

Simulation Process

- Problem & Software
 - •Execution vs. Trace vs. Stochastic vs. State Machine
- Model
 - •Emulation vs. Simulation vs. FPGA
 - •Cycle-accurate/Cycle-Approximate vs. CPI=X
- Hardware Representation
 - Exact & specific to very general
- •Hybrid (any or all of the above)

- Problem & Software
 - •Execution vs. Trace vs. Stochastic vs. State Machine
- Model
 - •Emulation vs. Simulation vs. FPGA
 - •Cycle-accurate/Cycle-Approximate vs. CPI=X
- Hardware Representation
 - Exact & specific to very general
- •Hybrid (any or all of the above)

What is Wrong

Best & Worst Aspects of Today's Infrastructure

Best: Diversity

Best & Worst Aspects of Today's Infrastructure

Best: Diversity

Worst: Diversity

Little Interoperability / Reuse Poor Maintainability Poor Documentation "Black Box" Effect Little Trust

Software Engineering

•Mike Kistler (IBM)

-Must be high-performing

-Must enable parallel execution

-Must provide the "right" abstractions

Core Services

- Simulator construction is primarily a software engineering activity
 - Reuse is essential
 - The simulation infrastructure must be modular

•Ali Saidi & Steve Reihardt (ARM/AMD)

- Full-time maintenance and support staff
 - These are large projects: gem5 is ~200,000 lines of code
 - Need to handle the unglamorous side of software and tool development: regression testing, validation, porting, etc.

•David Wood

- Use all methods as appropriate
 - Computer evaluation methods are not one size fits all
- More of the community's activity should benefit the community
 - Expand the use of open source
- Treat computer evaluation as a science

Challenge of Validation

- •We don't have enough details for "fully" accurate simulation
 - -Vendors IP consideration
 - -Complexity vs. Flexibility
- Standards for "how accurate is enough" vary
 - -Models validated at different levels, with different methodologies
- Assumptions poorly communicated
- Lot of Validation in Isolation
- Fundamental question
 Is Simulation Useful?

Component	Method	Error
DRAMSim	RTL Level validation against Micron	Cycle
Generic Proc	Simplescalar SPEC92 Validation	~5%
NMSU	Comparison vs. existing processors on SPEC	<7%
RS Network	Latency/BW against SeaStar 1.2, 2.1	<5%
MacSim	Comparison vs. Existing GPUs	Ongoing <10% expected
Zesto	Comparison vs several processors, benchmarks	4-5%
McPAT	Comparisons against existing processors	10- 23%
GeM5	Comparisons against existing processors	Ongoing 5-20%

Laboratories

Where We Want To Be

HPCAS Survey

 How much do you currently use simulators? how much would you like to?

Ideal World

- Common Simulation Environment with dozens of interoperable component models
- Include models for power, energy, temperature, reliability, and cost
- Open non-restrictive license
- •PARALLEL & Fast
- Long Term support
 - –Documentation
 - -Reuse
- Accepted by community
 - -Validated to known standard with uniform methodology
 - -Easy to replicate results

•Multi-level: Analytical to Behavioral to Cycle-Level to Hardware in the Loop

SST Simulation Project Overview

Goals •Become the standard architectural simulation framework for HPC •Be able to evaluate future systems on DOE workloads •Use supercomputers to design supercomputers	Status Includes parallel simulation core, configuration, power models, basic network and processor models, and interface to detailed memory model <u>http://code.google.com/p/sst-simulator/</u>
Technical Approach Parallel Parallel Discrete Event core with 	Consortium "Best of Breed" simulation suite Combine Lab, academic, & industry
conservative optimization over MPI •Holistic •Integrated Tech. Models for power	
 McPAT, Sim-Panalyzer Multiscale Detailed and simple models for processor. network. and memory 	E COLUMBIA National Laboratory
•Open •Open Core, non viral, modular	Mellanox Micron Micron OSTON Image: Standia National Laboratories NIVERSITY Image: Standia National Laboratories

What Can We Accomplish for Exascale?

- Component & System validation is difficult, too many unknowns for high accuracy
- Many 'consumers'
- Is simulation still useful?
- Historical Analog
 - -US Navy would develop "Spring Style" design sketches of warships for use in war games (simulations) and as specification to "vendor" shipyards
 - –Combination of abstract design & simulation allow users & vendors to perform co-design
 - "Software Team": Naval War College developing tactics
 - "Hardware Vendor": Shipyards building the ship

US Navy "Spring Style"

Role of Simulation for Exascale

- Required for effective co-design, but need to address more audiences
- It is not our role to simulate exactly what an Exascale System will look like today
- •We should be developing "Spring Styles"
 - Abstract models which inform the hardware designers of our requirements
 - –Models that the application teams can use to understand how future architectures will impact their applications

We need to harness diversity, not fight it We need long-term support We need consensus How do we get there?

How do we get there?

- HPCAS Possible Plan of Action: Standard Simulation Interface
- Workshops to define interface
 - -Limited mandate
 - Define minimal subset of interfaces to promote adoption
 - Phased approach (core + optional chapters)
 - •Three phases
 - -Define interface sets: priority/required-or-not, then define interfaces
 - -Define Core interfaces

-Define Component Interfaces

- •User Group to guide towards industrial strength
- Encourage multiple existing projects to adopt interface
- •Calls for... / Follow-on projects for...

-Implementations of interface

-Porting components to plug into interface

- Need to start with clear, limited, attainable goals
- Study examples we already have
- Long-Term Multi-Agency Funding

•Analogy to MPI

Bonus Slides

Simulation is the Nexus of CoDesign

- •CoDesign needs a meeting point between applications and architectures
- •Full Apps & Archs. are too complex to easily reason about, so we create proxies
- Simulation provides a way...
 - –...to combine and test AMMs and MiniApps
 - ...for application writers to test ideas on machines that don't exist
 - ...for architects to understand evolving application proxies

Who Can Save Us?

- •Why Not Just Industry?
 - -Industry focused on specific products, often no system view
 - –Labs are 'neutral' able to work with everyone, don't compete with anyone, able to keep a secret
 - –We can work with Industry and academia to provide a system & application view they might not have

•Why Not Just Academia?

- –Labs can provide long-term support, software engineering (i.e. we can work on something even if it doesn't become a paper)
- Labs bring
 - -Neutrality
 - -Focus: HPC Long-Term Development System-Level
 - -Application Knowledge
 - -Look for big changes out the box ideas, long term

Component Validation

- •Strategy: component validation in parallel with system-level validation
- •Current components validated at different levels, with different methodologies
- Validation in isolation

•What is needed

- –Uniform validation methodology (apps)
- -System (multi-component) level validation
- –Learn from multi-level physics apps

Component	Method	Error
DRAMSim	RTL Level validation against Micron	Cycle
Generic Proc	Simplescalar SPEC92 Validation	~5%
NMSU	Comparison vs. existing processors on SPEC	<7%
RS Network	Latency/BW against SeaStar 1.2, 2.1	<5%
MacSim	Comparison vs. Existing GPUs	Ongoing <10% expected
Zesto	Comparison vs several processors, benchmarks	4-5%
McPAT	Comparisons against existing processors	10- 23%
GeM5	Comparisons against existing processors	Ongoing 5-20%