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Motivation 

!   The energy cost of powering a supercomputer is rapidly increasing 
!   Will keep increasing in the future è not sustainable  
!   Next generation exascale systems should be more power/energy efficient 
 

!   Several studies point out that the major energy limiting factor is data 
movement across memory hierarchy  

 
!   No quantitative evaluation of data movement on the energy 

consumption for scientific applications on current systems 
!   Simulation environment: 

!   Obtain energy cost per operation 
!   Limited-size applications/reduced systems 

!   Applications/Systems characterization with external power meter 
!   Run full-size application 
!   Do not provide the energy cost of moving data 
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Introduction 

 

!   We propose a methodology to accurately estimate the energy cost of 
data movement: 
!   Uses highly-tuned micro-benchmarks 
!   Follows an incremental-step methodology 
!   Derive the energy cost of moving data between any two levels of the 

memory hierarchy 
 
!   We apply our methodology to complex applications and benchmarks 

(NEKBone, GTC, LULESH and NAS benchmarks) 
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  What is the amount of energy spent in data movement on    
  current systems? 
  What is the dominant component of data movement energy? 
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Micro-benchmarks 

!   Isolating the energy cost of a specific data movement instruction is not 
trivial due to 
!   Out-of-order execution 
!   Speculation 
!   Memory prefetching, etc.  

!   We design a new set of well-engineered micro-benchmarks: 
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MB_init();!
for (i=0; i<N; i++)!

!UNROLL_X{!
! !<body_loop>!
!}!

}!
MB_finit();!

MB	   L1	  miss	  
rate	  %	  

L2	  miss	  
rate	  %	  

L3	  miss	  
rate	  %	  

MBL1	   0.03	   0.01	   0.01	  

MBL2	   99.96	   0.13	   0.12	  

MBL3	   99.58	   99.47	   0.56	  

MBMEM	   99.48	   99.48	   99.18	  



Incremental-step methodology 
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!   Measuring the energy cost of single operations: 
!   Compute the energy cost of moving data from L1 to processor register 
!   Then incrementally determined the energy cost of moving data across the 

memory hierarchy (ΔE) 



How to measure Power? 
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!   We combine the information provided by the internal power sensor 
and the external power meter: 
!   Obtain precise information about socket’s power 
!   Derive other system components power by difference 
 
 
 External Power Meter: 

 
!   Measures the power 

consumption of the entire 
compute node  

!   Provides a power sample 
every 2/3 seconds 

 
 

Internal Power Sensor: 
 

!   Provides power samples at a 
higher frequency with a 
higher accuracy 

!   Measures only the power 
consumption of the processor 
chip 
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Measuring Dynamic Energy 
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!   Measure node idle power Pidle 

!   Isolate the dynamic power consumption of off-chip components 
!   Processor fans (two speeds -> Pfan1, Pfan2 )  
!   Memory 

!   Accurately compute the energy of each micro-benchmark 
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Energy Cost of Stalled Cycles 

August 13, 2014 8 G.Kestor 

!   While stalled, processor cores still consume power (Pstall) 
!   Resolve data dependencies, detect memory access patterns, etc. 
!   Should not be included in the cost of moving data 

!   We wrote an alternative version of MBL1 that fully utilizes the pipeline: 
!   MBL1asm presents no dependencies è no stall cycles 
!   We can derive EL1 from MBL1asm 

!   Using MBL1 and MBL1asm we derive Estall 
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Long Latency Memory Operations 
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!   MBL2, MBL3, MBMEM perform long latency memory operations 
!   L1 latency:       4 cycles 
!   L2 latency:     20 cycles 
!   L3 latency:     60 cycles 
!   Memory latency:  150 cycles 
 

!   Impossible to implement a version of these micro-benchmarks with no 
stall cycles: 
!   Load-store queue becomes full 
!   Core stalls while waiting for the data 
 

!   Subtract Estall from the energy consumed by the micro-benchmark 

EL2 =
EMB_L2 −Estall *Nstall

NL2



Data movement by Prefetchers 
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!   To estimate energy cost of data prefetching, we implemented an 
alternative version of MBMEM: 
!   MBMEM:  Stride size 512, no data prefetching 
!   MBMEM64:  Stride size   64, perfect data prefetching 

!   AMD Interlagos 6227 provides two specific performance counters for 
data prefetching requests (L1 and L2 prefetcher) 

MB	   L1	  miss	  
rate	  %	  

L2	  miss	  
rate	  %	  

L3	  miss	  
rate	  %	  

L1	  prefetcher	  
%	  

L2	  prefetcher
%	  

MBMEM	   99.48	   99.48	   99.18	   0.15	   0.04	  

MBMEM64	   99.33	   99.94	   2.15	   97.75	   97.60	  



Summary of Energy Costs 

Opera5on	   Opera5on	  Energy	  
Cost	  (nJ)	  

Equivalent	  
ADD	  

ADD	   0.64	   -‐	  

L1-‐>REG	   1.11	   1.8x	  

L2-‐>REG	   2.21	   3.5x	  

L3-‐>REG	   9.80	   15.4x	  

MEM-‐>REG	   63.64	   99.7x	  

Stall	   1.43	   -‐	  

Prefetching	   65.08	   -‐	  
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EDM = ΔEi *Ni
i
∑

i	   	  =	  L1,	  L2,	  L3,	  MEM,	  PRE	  
ΔEi	  	  =	  Energy	  of	  moving 	  	  
data	  from	  i	  to	  i-‐1	  
Ni	   	  =	  Number	  of	  events	  

Data	  Movement	   Data	  movement	  
Energy	  (nJ)	  

-‐	   -‐	  

L1-‐>REG	   1.11	  

L2-‐>L1	   1.10	  

L3-‐>L2	   7.59	  

MEM-‐>L3	   53.84	  

-‐	   -‐	  

MEM-‐>cache	   65.08	  



Energy Breakdown 
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!   Various percentage of energy consumed in data movement: 18% (EP) 
and 40% (MG), 25% on average 

!   19-36% of total dynamic energy spent in stall cycles 
!   Motivates simpler architectural design 

!   Others: computing 
operations, fans, circuitry, etc.  

!   Total dynamic energy 
measured from external 
power meter. 

!   Stall and Data Movement 
estimated by our model. 



Energy spent into moving data 
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! NEKBone and GTC have been optimized è excellent locality 
!   LULESH: 

!   Good locality 
! Prefetchers move most of the data 
!   Still needs to bring more data from memory 

GTC	  NEKBone	   LULESH	  
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Let’s assume… 

!   Energy cost of computation reduces to 1/10 
!   Energy cost of data movement remains roughly the same 
!   Processor architectures become simpler and more energy efficient 

(1/2 stall cycle energy) 
!   Energy cost of other, non-processor components (fans, circuitry, etc.) 

remains roughly the same 
August 13, 2014 14 G.Kestor 
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Conclusions 
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!   Data movement is the key challenge on the road to Exascale 

!   We accurately estimate the energy cost of moving data across 
memory hierarchy:  
!   Uses a set of highly-tuned micro-benchmarks 
!   Follows an incremental-step  approach 

!   Our analysis for scientific applications on current systems: 
!   Significant amount energy spent to move data across memory hierarchy, 

25% on average 
!   Data movement should be reduced in future systems 

!   Energy spent in stall cycles is noticeable, 19%-36% 
!   Guides simpler architecture design 

!   Memory prefetchers also contributes in data movement 
!   More precise data prefetcher to avoid prefetching unnecessary data 



ModSim Questions 

!   what is the major contribution of your research?  
!   Methodology to evaluate the energy cost of data movement  
!   Estimation of the energy cost of data movement in scientific applications 

running on current systems 
!   what are the gaps you identify in the research coverage in your area? 

!   More precise sensors to measure components’ power 
!   Better interaction with computer architects 
!   Assumption on future architecture components and their energy cost is 

not clear 
!   what is the bigger picture for your research area?  

!   Data movement 
!   Energy efficiency 
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Thanks! 
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Backup slides 
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Empirical Evaluation of Stalled Cycle Energy 

!   MBL1 operations include stalled cycles: 
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E _MBL1 = EL1 *NL1 +EW *NL1 +Estall *Nstall

≅ k *EL1 *NL1 +Estall *Nstall

!   MBL1 operations consume more energy than MBL1asm operations 

 
!   The energy consumption of MBL1 is E_MBL1 (measured): 

E _MBL1
NL1

>
E _MBL1asm

NL1

= EL1



Empirical Evaluation of Stalled Cycle Energy (cont.) 
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!   Where: 
!   NL1  = number of loads operations issued by MBL1 

!   EL1  = energy cost of a load that moves data from L1 (estimated from 
MBL1asm 

!   k  = empirical factor that account for the wasted energy EW. 
!   1 < k <= 2  A load is issued, 2 is the maximum number of loads/cycle 
!   k < 2   data does not move from the L1 to register 
 

!   We evaluated k in terms of “missing opportunities (loads)” 
!   For simplicity, assume that the energy is evenly spread in 4 cycles 
!   In 4 cycles there could be 7 loads (8 max–1 not issued) è1.75 ld/cycle 

!   k = 1.75 is an empirical value based on reasoning 
!   Compare IPC: 2 (MBL1asm), 0.75 (MBL1) 
!   Missed load energy = 75% of regular load (energy not consumed when 

issuing/retrieving data from L1) 

Estall =
E _MBL1 − k *EL1 *NL1

Nstall



Memory Prefetchers 

August 13, 2014 21 G.Kestor 

!   Processors proactively prefetch/move data from memory to the 
processor caches to hide latency/improve performance 

!   This data movement is 
!   Not initiated by a programmer 
!   Not reflected in the number of load operations or cache misses 

!   AMD Interlagos 6227 processor features two prefetchers 
!   L1 prefetcher:  

!   activated by L1 cache misses 
!   brings data from memory to the L1 cache 

!   L2 prefetcher: 
!   Reacts to L2 cache misses 
!   Coordinates with L1 prefetcher 
!   Brings data from memory to the L2 cache 



Model Validation 
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!   Validation benchmarks:  
!   Combine different operations in the body loop 
!   Data movement + computing operations 

!   Compute the error rate between the estimated energy and the energy 
obtain from external measurement 
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Scientific Applications 
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!   LULESH: 
!   DOE Co-design center application 
!   the Shock Hydrodynamics Challenge Problem 
!   solves Sedov blast problem 

! Nekbone: 
!   CESAR Co-design center application 
!   Proxy application of NEK5000 
!   solves Poisson equation using a conjugate gradient  

!   GTC: 
!   DOE Office of Science application 
!   3-dimensional code 
!   studies microturbulence in magnetically confined 

toroidal fusion plasmas 



Energy spent into moving data 
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!   All data moved to registers must come from the L1 
!   ΔEL1 is dominant for benchmarks with good locality (LU) 

!   Memory prefetchers: 
!   Capable of capturing access patterns   è ΔEMEM  low  (LU) 
!   If not, still need to move data from memory  è ΔEMEM  high  (SP) 
!   May waste energy prefetching useless data  è ΔEPRE >> ΔEL1 (CG) 

SP	  LU	   CG	  
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