
Analyzing the Energy Cost of
Data Movement in Scientific
Applications
GOKCEN KESTOR, ROBERTO GIOIOSA, DARREN KERBYSON, ADOLFY HOISIE

Pacific Northwest National Laboratory
Richland, WA

Workshop on Modeling & Simulation of Systems and Applications, Seattle, WA

August 13, 2014 2

Motivation

!   The energy cost of powering a supercomputer is rapidly increasing
!   Will keep increasing in the future è not sustainable
!   Next generation exascale systems should be more power/energy efficient

!   Several studies point out that the major energy limiting factor is data
movement across memory hierarchy

!   No quantitative evaluation of data movement on the energy

consumption for scientific applications on current systems
!   Simulation environment:

!   Obtain energy cost per operation
!   Limited-size applications/reduced systems

!   Applications/Systems characterization with external power meter
!   Run full-size application
!   Do not provide the energy cost of moving data

G.Kestor

August 13, 2014 3

Introduction

!   We propose a methodology to accurately estimate the energy cost of
data movement:
!   Uses highly-tuned micro-benchmarks
!   Follows an incremental-step methodology
!   Derive the energy cost of moving data between any two levels of the

memory hierarchy

!   We apply our methodology to complex applications and benchmarks

(NEKBone, GTC, LULESH and NAS benchmarks)

G.Kestor

 What is the amount of energy spent in data movement on
 current systems?
 What is the dominant component of data movement energy?

August 13, 2014 4

Micro-benchmarks

!   Isolating the energy cost of a specific data movement instruction is not
trivial due to
!   Out-of-order execution
!   Speculation
!   Memory prefetching, etc.

!   We design a new set of well-engineered micro-benchmarks:

G.Kestor

MB_init();!
for (i=0; i<N; i++)!

!UNROLL_X{!
! !<body_loop>!
!}!

}!
MB_finit();!

MB	 L1	 miss	
rate	 %	

L2	 miss	
rate	 %	

L3	 miss	
rate	 %	

MBL1	 0.03	 0.01	 0.01	

MBL2	 99.96	 0.13	 0.12	

MBL3	 99.58	 99.47	 0.56	

MBMEM	 99.48	 99.48	 99.18	

Incremental-step methodology

August 13, 2014 5 G.Kestor

��� �� �� �� ���

	
�
	��	��	��

�
�

���
���

���
����

!   Measuring the energy cost of single operations:
!   Compute the energy cost of moving data from L1 to processor register
!   Then incrementally determined the energy cost of moving data across the

memory hierarchy (ΔE)

How to measure Power?

August 13, 2014 6 G.Kestor

!   We combine the information provided by the internal power sensor
and the external power meter:
!   Obtain precise information about socket’s power
!   Derive other system components power by difference

 External Power Meter:

!   Measures the power

consumption of the entire
compute node

!   Provides a power sample
every 2/3 seconds

Internal Power Sensor:

!   Provides power samples at a
higher frequency with a
higher accuracy

!   Measures only the power
consumption of the processor
chip

�����

������

��

�	�
�

�	�
�

����

��
�
��

�������� �� �� �� �� �� �� ���	�

	�
�������
����

��

Measuring Dynamic Energy

August 13, 2014 7 G.Kestor

!   Measure node idle power Pidle

!   Isolate the dynamic power consumption of off-chip components
!   Processor fans (two speeds -> Pfan1, Pfan2)
!   Memory

!   Accurately compute the energy of each micro-benchmark

-‐ =

CP
U
	

Id
le
	

Id
le
	

CP
U
	

O
C	

O
C	

Ext.	 Measur.	

Int.	 Measur.	

Off-‐chip	 power	

Energy Cost of Stalled Cycles

August 13, 2014 8 G.Kestor

!   While stalled, processor cores still consume power (Pstall)
!   Resolve data dependencies, detect memory access patterns, etc.
!   Should not be included in the cost of moving data

!   We wrote an alternative version of MBL1 that fully utilizes the pipeline:
!   MBL1asm presents no dependencies è no stall cycles
!   We can derive EL1 from MBL1asm

!   Using MBL1 and MBL1asm we derive Estall

� � � � �
� � �� �

��	
����
 ��	
������� ����������� ����	���
������

MBL1	

MBL1asm	

� � � � �
� � �� �

Long Latency Memory Operations

August 13, 2014 9 G.Kestor

!   MBL2, MBL3, MBMEM perform long latency memory operations
!   L1 latency: 4 cycles
!   L2 latency: 20 cycles
!   L3 latency: 60 cycles
!   Memory latency: 150 cycles

!   Impossible to implement a version of these micro-benchmarks with no
stall cycles:
!   Load-store queue becomes full
!   Core stalls while waiting for the data

!   Subtract Estall from the energy consumed by the micro-benchmark

EL2 =
EMB_L2 −Estall *Nstall

NL2

Data movement by Prefetchers

August 13, 2014 10 G.Kestor

!   To estimate energy cost of data prefetching, we implemented an
alternative version of MBMEM:
!   MBMEM: Stride size 512, no data prefetching
!   MBMEM64: Stride size 64, perfect data prefetching

!   AMD Interlagos 6227 provides two specific performance counters for
data prefetching requests (L1 and L2 prefetcher)

MB	 L1	 miss	
rate	 %	

L2	 miss	
rate	 %	

L3	 miss	
rate	 %	

L1	 prefetcher	
%	

L2	 prefetcher
%	

MBMEM	 99.48	 99.48	 99.18	 0.15	 0.04	

MBMEM64	 99.33	 99.94	 2.15	 97.75	 97.60	

Summary of Energy Costs

Opera5on	 Opera5on	 Energy	
Cost	 (nJ)	

Equivalent	
ADD	

ADD	 0.64	 -‐	

L1-‐>REG	 1.11	 1.8x	

L2-‐>REG	 2.21	 3.5x	

L3-‐>REG	 9.80	 15.4x	

MEM-‐>REG	 63.64	 99.7x	

Stall	 1.43	 -‐	

Prefetching	 65.08	 -‐	

August 13, 2014 11 G.Kestor

EDM = ΔEi *Ni
i
∑

i	 	 =	 L1,	 L2,	 L3,	 MEM,	 PRE	
ΔEi	 	 =	 Energy	 of	 moving 	 	
data	 from	 i	 to	 i-‐1	
Ni	 	 =	 Number	 of	 events	

Data	 Movement	 Data	 movement	
Energy	 (nJ)	

-‐	 -‐	

L1-‐>REG	 1.11	

L2-‐>L1	 1.10	

L3-‐>L2	 7.59	

MEM-‐>L3	 53.84	

-‐	 -‐	

MEM-‐>cache	 65.08	

Energy Breakdown

August 13, 2014 12 G.Kestor

!   Various percentage of energy consumed in data movement: 18% (EP)
and 40% (MG), 25% on average

!   19-36% of total dynamic energy spent in stall cycles
!   Motivates simpler architectural design

!   Others: computing
operations, fans, circuitry, etc.

!   Total dynamic energy
measured from external
power meter.

!   Stall and Data Movement
estimated by our model.

Energy spent into moving data

August 13, 2014 13 G.Kestor

! NEKBone and GTC have been optimized è excellent locality
!   LULESH:

!   Good locality
! Prefetchers move most of the data
!   Still needs to bring more data from memory

GTC	 NEKBone	 LULESH	

76%

0%
3%

1%

20%

L1
L2

L3
MEM

PREFETCH

69%

0%

3%

1%

27%

56%

5%

4%

11%

24%

Let’s assume…

!   Energy cost of computation reduces to 1/10
!   Energy cost of data movement remains roughly the same
!   Processor architectures become simpler and more energy efficient

(1/2 stall cycle energy)
!   Energy cost of other, non-processor components (fans, circuitry, etc.)

remains roughly the same
August 13, 2014 14 G.Kestor

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

BT	 SP	 FT	 MG	 LU	 EP	 CG	 Nekbone	 GTC	 LULESH	

Data	 Movement	 Stall	 cycles	 Others	

Conclusions

August 13, 2014 15 G.Kestor

!   Data movement is the key challenge on the road to Exascale

!   We accurately estimate the energy cost of moving data across
memory hierarchy:
!   Uses a set of highly-tuned micro-benchmarks
!   Follows an incremental-step approach

!   Our analysis for scientific applications on current systems:
!   Significant amount energy spent to move data across memory hierarchy,

25% on average
!   Data movement should be reduced in future systems

!   Energy spent in stall cycles is noticeable, 19%-36%
!   Guides simpler architecture design

!   Memory prefetchers also contributes in data movement
!   More precise data prefetcher to avoid prefetching unnecessary data

ModSim Questions

!   what is the major contribution of your research?
!   Methodology to evaluate the energy cost of data movement
!   Estimation of the energy cost of data movement in scientific applications

running on current systems
!   what are the gaps you identify in the research coverage in your area?

!   More precise sensors to measure components’ power
!   Better interaction with computer architects
!   Assumption on future architecture components and their energy cost is

not clear
!   what is the bigger picture for your research area?

!   Data movement
!   Energy efficiency

August 13, 2014 16 G.Kestor

Thanks!
August 13, 2014 17 G.Kestor

Backup slides

August 13, 2014 18 G.Kestor

� � � � �
� � �� �

Empirical Evaluation of Stalled Cycle Energy

!   MBL1 operations include stalled cycles:

August 13, 2014 19 G.Kestor

E _MBL1 = EL1 *NL1 +EW *NL1 +Estall *Nstall

≅ k *EL1 *NL1 +Estall *Nstall

!   MBL1 operations consume more energy than MBL1asm operations

!   The energy consumption of MBL1 is E_MBL1 (measured):

E _MBL1
NL1

>
E _MBL1asm

NL1

= EL1

Empirical Evaluation of Stalled Cycle Energy (cont.)

August 13, 2014 20 G.Kestor

!   Where:
!   NL1 = number of loads operations issued by MBL1

!   EL1 = energy cost of a load that moves data from L1 (estimated from
MBL1asm

!   k = empirical factor that account for the wasted energy EW.
!   1 < k <= 2 A load is issued, 2 is the maximum number of loads/cycle
!   k < 2 data does not move from the L1 to register

!   We evaluated k in terms of “missing opportunities (loads)”
!   For simplicity, assume that the energy is evenly spread in 4 cycles
!   In 4 cycles there could be 7 loads (8 max–1 not issued) è1.75 ld/cycle

!   k = 1.75 is an empirical value based on reasoning
!   Compare IPC: 2 (MBL1asm), 0.75 (MBL1)
!   Missed load energy = 75% of regular load (energy not consumed when

issuing/retrieving data from L1)

Estall =
E _MBL1 − k *EL1 *NL1

Nstall

Memory Prefetchers

August 13, 2014 21 G.Kestor

!   Processors proactively prefetch/move data from memory to the
processor caches to hide latency/improve performance

!   This data movement is
!   Not initiated by a programmer
!   Not reflected in the number of load operations or cache misses

!   AMD Interlagos 6227 processor features two prefetchers
!   L1 prefetcher:

!   activated by L1 cache misses
!   brings data from memory to the L1 cache

!   L2 prefetcher:
!   Reacts to L2 cache misses
!   Coordinates with L1 prefetcher
!   Brings data from memory to the L2 cache

Model Validation

August 13, 2014 22 G.Kestor

!   Validation benchmarks:
!   Combine different operations in the body loop
!   Data movement + computing operations

!   Compute the error rate between the estimated energy and the energy
obtain from external measurement

−6

−5

−4

−3

−2

−1

0

1

2

L
1

+
N

O
P

L
1

+
A

D
D

L
2

+
N

O
P

L
2

+
N

O
P

+
A

D
D

L
3

+
L

1
+

N
O

P
+

A
D

D

M
E

M
+

N
O

P

E
rr

o
r

R
a

te
 (

%
)

EL1+NOP = EL1 *NL1 +ENOP *NNOP +Estall *Nstall

Scientific Applications

August 13, 2014 23 G.Kestor

!   LULESH:
!   DOE Co-design center application
!   the Shock Hydrodynamics Challenge Problem
!   solves Sedov blast problem

! Nekbone:
!   CESAR Co-design center application
!   Proxy application of NEK5000
!   solves Poisson equation using a conjugate gradient

!   GTC:
!   DOE Office of Science application
!   3-dimensional code
!   studies microturbulence in magnetically confined

toroidal fusion plasmas

Energy spent into moving data

August 13, 2014 24 G.Kestor

!   All data moved to registers must come from the L1
!   ΔEL1 is dominant for benchmarks with good locality (LU)

!   Memory prefetchers:
!   Capable of capturing access patterns è ΔEMEM low (LU)
!   If not, still need to move data from memory è ΔEMEM high (SP)
!   May waste energy prefetching useless data è ΔEPRE >> ΔEL1 (CG)

SP	 LU	 CG	

58%

2%

4%

8%

27%
23%

5%

8%

2%

62%

L1
L2

L3
MEM

PREFETCH

38%

1%

7%
18%

36%

