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Uncertainty quantification is critical to useful

simulation, regardless of detail or fidelity Ul

Laboratories
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Critical question to integration of UQ tools:
intrusive vs non-intrusive, code vs workflow
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What bridges the gap from left to right?

C/C++ API
or
Model/simulator .
standalone code Toolkit . Results + UQ
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Critical question to integration of UQ tools:
intrusive vs non-intrusive, code vs workflow

Sandia
"1 National

Laboratories

Goal of presentation here is not universal solution to UQ
methods and code integration,
but framing the problem via two use cases

C/C++ API

or
Model/simulator Toolkit

standalone code Results + UQ
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Where we understand UQ better: -
National
experimental noise and series expansion aboroies

¢ Errors due to randomness
or experimental scatter

F0 =3I D0 v R

o U Analytic formula derived

+) from Taylor series
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The chicken and the egg of UQ: Knowing the error',|1 sasc
without knowing the answer o
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The chicken and the egg of UQ: Knowing the errorﬂ1 o
without knowing the answer o
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Making Bayesian inference a universally
understood concept
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Posterior: Likelihood Function: Prior:
Given prior knowledge and Physically motivated likelihood Encapsulates
new data, encapsulates best estimate of data points assuming a set prior knowledge of
knowledge of parameters of parameters problem
P} | {oi} ) o P({o [ {0} ) x P({A})
Quantity of interest, but not NOT quantity of interest, but
possible to directly estimate can be estimated directly

_/

Infer posterior from physically motivated likelihood!



Making Bayesian inference a universally
understood concept
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Posterior: Likelihood Function: Prior:

Given prior knowledge and Physically motivated likelihood Encapsulates

new data, encapsulates best estimate of data points assuming a set prior knowledge of
knowledge of parameters of parameters problem

GD) ()

PCIED) = P({=)
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Data points: Model parameters:
Coin flip: heads or tails Coin flip: P(heads) = H
Simulated runtime Latency/bandwidth

P( {z;} [{ i} ) Given physical model, {A}, estimate likelihood of data

P( {N} [ {xi} ) Given data, {x;}, estimate likelihood of physical model




How to translate abstract “model imperfection”
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How does model uncertainty manifest itself in
parameter uncertainties?

Parameter Probability Distribution

Prior Knowledge
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f|'| N
Single BW parameter
exact for all tests.
“Delta” function
probability
distribution.

Simulator is generally
Inaccurate

OR

Many parameters are
equally accurate

No single parameter
is exact for all tests,
but small parameter
range gives high
accuracy
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Calibration phase requires many, many samples
in parameter space to build distributions

M({\}) = S({N}) = ch\pk(g)

Simulation Surrogate k  Expansion
Model polynomial coefficients
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H’J = Coefficient c, fit over grid in
> / o4 parameter space

m— = Computation of surrogate is

Latency ps (L)

(1,1) (1,2)

® o o o
sweais | @1 _— - embarrassingly parallel
(B) S ~ = Polynomial allows rapid AMCMC
e o o ./H sampling of model output in
= parameter space

v * ¢ N = Expansion coefficients used in
sensitivity analysis
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Calibration phase requires many, many samples
in parameter space to build distributions
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Extensive sweep of parameter space for modest
problem sizes where we have “correct” answer or we
have really good idea of “correct” answer
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Extrapolating uncertainties into the unknown still
requires sampling
= Parameter likelihood distributions inform where to sample
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=  With few samples, can build semi-quantitative confidence interval
= Workflow integration to generate/run/collect/analyze samples

Parameter likelihood Model Output

P(A) M(A) 7

Parameter A
1 = confidence interval

Parameter A
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Four step UQ workflow for Bayesian Inference:
not intrusive to existing codes
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= @Generate: list of samples in parameter space generated by UQ
toolkit

" Run: parameter inputs through simulation/model

= Collect: simulation/model outputs into standard format

= Analyze: run outputs through machinery in UQ toolkit to generate
uncertainty distributions
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Output from analyze phase: error distributions

e .. m ﬁ?n?igir?al
and parameter sensitivities

Laboratories
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Reduced-order models or how PDE solvers
are way ahead of discrete event simulations
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* Rather than sampling in parameter space, can a simulation self-
diagnose its own errors?

* How bamis cti OO U dgio amcu describe heat
 Amoun®t ar systm $®|ve AN=8 H O

X is vector of size N




Reduced-order models or how PDE solvers i

are way ahead of discrete event simulations
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Rather than sampling in parameter space, can a simulation self-
diagnose its own errors?

How many basis functions do you need to accurately describe heat
flow problem with 9 different regions?

Amounts to linear system solve Ax=b [},

X is vector of size N
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Reduced-order models or how PDE solvers -
. . . m Il“aat}g:g?;ries
are way ahead of discrete event simulations

= Full order model
= N=10,000
=  Huge sparse system

= Brute force solution

= Reduced order model

= What if | already have several solutions
X1, X5, X3...7? HOW accurate is:

X = Ecixl.

i

= Small, dense system




How is a simulation a reduced order model? ) et

Link O ?
Two flows competing
for bandwidth
‘ Link 1

Discretization into flits shows even sharing of bandwidth on link 0
Link 0 (maximum bw: 100)
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How is a simulation a reduced order model? ) et

Link O ?

Two flows competing
for bandwidth

Link 1

Discretization shows uneven sharing of bandwidth on link 0
Link 0 (maximum bw: 100)
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Link 1 (maximum bw: 100) Link 1 remains unutilized for long time
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How does reduced order model perspective
help us get at error?

= We want to know to error
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E = ‘)’Z — x‘
= All we can compute is residual
R =|Ax - |



How does reduced order model perspective
help us get at error?

= We want to know to error
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E = ‘)’Z — x‘
= All we can compute is residual
R =|Ax - |

= Can we train computer to convert Rto E?
= Residual is an indicator for the error we care about



How does reduced order model perspective
help us get at error?

= We want to know to error
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E = ‘)’Z — x‘
= All we can compute is residual
R =|Ax - |

= Can we train computer to convert Rto E?

= Residual is an indicator for the error we care about
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What might be an indicator for error = i,

in a network simulator? boaones
Link 0

Two flows competing
for bandwidth

Link 1

Even if we don’t exactly model flit-level flow control,
Link 0 (maximum bw: 100) e still know that we did something wrong!
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Link 1 (maximum bw: 100) Here we have no idea that an error was made!
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Is this an intrusive or non-intrusive UQ? i

= Something must be logged for every packet event — intrusive

= Maintaining log of every event is too much data — need to reduce
data into other metrics
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Is this an intrusive or non-intrusive UQ?

= Results pending....
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Addressing MODSIM questions

= Major contribution:
= Math, workflow, AND toolkit

= Demonstrating need for both intrusive and non-intrusive solutions

=  @Gaps:

= Need bridge between mathematicians and programmers
= Need to define both interchange formats for non-intrusive toolkits and APIs

for intrusive libraries

= Bigger picture? Collaboration?

= Simulators/modelers looking to bracket errors
AND

= UQ researchers with methods developed in other domains like PDEs

= How to leverage results?
= Tutorials, not research papers
= Know thine audience

UQ Toolkit: sandia.gov/ugtoolkit
C++ API for code integration
Python workflow integration
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