Power-Performance Models for Runtime Reconfiguration and Power Capping

Pietro Cicotti, **Ananta Tiwari (AT)**, Laura Carrington EP Analytics, Inc. PMaC/SDSC

MODSIM 2015

Presenter - Ananta Tiwari (<u>ananta.tiwari@epanalytics.com</u>) Corresponding Author – Pietro Cicotti (<u>pietro.cicotti@epanalytics.com</u>)

Motivation

- Goals:
 - Support proactive run time decisions
 - Create integrated power/performance models
- Requirement:
 - Incur little runtime overhead
 - Use little information
 - Be queried quickly
- Approaches:
 - Instruction-Level Modeling
 - Constructed using single-instruction benchmarks
 - Correlates instructions in compute phase to performance/power
 - Statistical Modeling
 - Constructed on micro-benchmarks
 - Correlates performance hardware counters to performance/power

Use-case

- Run-time system activated or informed before a compute phase
 - Compute phases identified in the source code
 - Run-time system API calls added to the source code
 - Compute phases identified in the binary
 - Run-time system API calls added by binary instrumentation
 - Runtime queries models and selects optimal configuration
- Performance/power locally optimized
- Power cap globally imposed (out of scope)

Instruction-Level Models

- Instruction-level measure cost in terms of performance and energy for all instructions
 - Benchmark the contribution of individual instructions
 - add r1_64b,r2_64b -> 1 cycle, 1.4nJ (2.6GHz), 1.2nJ (2.5GHz), ...
 - Create a model that aggregates the contributions
 - loop@2.5GHz
 - Time=2.5 × 10⁻⁹ × α × \sum cycles_i
 - Energy= \sum energy_i(2.5GHz)
 - Power=Energy/Time
 - Offline
 - Measure the contribution of single instructions
 - Create the model
 - Analyze/instrument code
 - Online
 - Use information from static analysis before compute phase start and invoke run time system
 - Use information at run time dynamic execution
 - E.g. tune α for expected hit rate
 - Search performance/power space at different frequencies
 - Optimize: e.g. power limit and Energy Delay Product

Benchmarking Instructions

- Reduce benchmarking space
 - 300+ instructions in x86_64 ISA
 - Some instructions are overloaded
 - Different data types, number of operands, etc.
- Group instructions in equivalence classes
 - Members of an equivalence class have same latency and energy cost
 - E.g. [add]={add, sub, and, ...}
- Approximate energy at different frequencies

Benchmarks

Arbitrarily long sequence of embedded asm

for(i=0;i<n;++i) UNROLL(asm volatile ("subsd %%xmm1, %%xmm0\t\n"::));

. . .

...

0000000000400860 <main>:

400900: f2 Of 5c c1 400904: f2 Of 5c c1 400908: f2 Of 5c c1

subsd %xmm1,%xmm0
subsd %xmm1,%xmm0
subsd %xmm1,%xmm0

 Power/Energy measured for system (Watts), package (RAPL) and DRAM (RAPL)

X EPAnalytics

Memory Operands

- Load/store instructions
- Instructions with memory operands
- Latency and energy depend on level servicing request
 - E.g. latency=4 cycles, 12 cycles, 54 cycles, 375 cycles
- ad-hoc benchmark to target a single level
- Need estimate at runtime of hit rates

Integration with Tools

- Compile time or static binary analysis
 - Determine instruction mix
- Tools (or programmer)
 - Identify compute phases and insert calls to run time system
 - setup ad-hoc model for a given compute phase
 - run time parameters: hit rates, optimization target, and power cap
 - if know or reasonably estimate possible, model is statically tuned
- Run time system
 - Receives parameters before computation phase
 - Runs model and selects optimal DVFS setting

Machine-Learning Approach

- Develop machine learning based model to inform power capping decisions
 - Models are trained using hardware counters
 - Explore the performance and power sensitivity of different computations when power-related hardware parameters change

Enabling Components

- Main enabling components
 - Modeling methodology that can encapsulate the relationship between hardware power states, application characteristics derived from hardware counters and power/performance responses
 - A set of computational kernels that are representative of most of the computations we see in HPC

Modeling Methodology

- Dimension reduction using correlation analysis and PCA
- Modeling technique: Cubist
 - Rule-based learning model built using a tree of linear regression models
 - Predictions are made using a linear model found at the leaf nodes of the tree
 - The choice of leaf is determined by the rules in nonterminal nodes that are also based on linear regression models
 - Has the capability of capture non-linear relationships between inputs

Modeling Methodology

- Prevent over-fitting:
 - Split the empirical dataset into training and validation sets
 - 60%-40% split: 60% used for training the model and 40% for validation
 - 10-fold cross validation to avoid over-fitting during model training
- Variable importance analysis to determine which predictors have the most impact on performance and power

Summary

- Two approaches:
 - Instruction-based
 - Estimates cost of instructions, directs models with instruction mix and optimization target
 - Status
 - Tuning and validating
 - Working on tools and run time system integration
- Future goals
 - Integration with run time system
 - Model ARM
 - Multi-resource management and power shifting
 - Local and global optimizations

