

Proudly Operated by Battelle Since 1965

Modeling the Performance and Energy Impact of Dynamic Power Steering

KEVIN J. BARKER, DARREN J. KERBYSON PACIFIC NORTHWEST NATIONAL LABORATORY

Modeling and Simulation August 12, 2015. Seattle, WA

Motivation

Trends in systems

- Restrictive power budgets possible that not all architectural components may be active at full capability simultaneously
- Fine-grained power measurement and allocation codes can closely monitor and modify power consumption characteristics
- Default mode of execution may be "throttled down" leaving performance on the table

Trends in applications

- Adaptivity and asynchrony
- Input-dependent execution cannot be optimized in advance
- Evolving computation leads naturally to dynamic load imbalance

Can these trends be exploited to improve performance without negatively impacting power consumption?

Power saving mechanisms tend to be local

- Most energy saving mechanisms rely on exploiting slack
 Down-clocking under utilized resources
 DVFS is available mechanism
- Some use predictive models to determine forthcoming slack and duration duration periods
 Energy Templates: use of per-core micro-models
- In power constrained systems a more <u>global</u> view is needed:
 - Which parts of the system to down-clock to satisfy the power-cap
 - At a socket level (overcome dark-silicon),
 - At a rack level (power distribution)
 - At a system level (machine room constraints)

Energy Templates

Proudly Operated by Battelle Since 1965

- Expression of complex activities
- Use per core model to determine when savings possible
- Run-time uses DVFS and/or to idle-core
- Template interfaces between application and hardware
 - **Example:** ARGOS MD code, parallelized over cell-cell interaction pairs results in input-dependent load imbalance

"Energy Templates: Exploiting Application Information to Save Energy", Kerbyson, Vishnu, Barker, IEEE CLUSTER, 2011.

Dynamic power steering

Concept: Route power to those resources that are over-loaded and away from under-loaded resources to compensate

- Optimizes power consumption in two ways:
 - Leaves data in place minimizes power lost to data migration
 - Routing available power to where the work is Power Balancing

Targeting workloads

- In which static calculation of ideal power distribution is not possible (e.g., data-dependent execution, variation over time)
- In which performance is impacted by changes to node or core *p*-state (i.e., by allocated more power, performance may be improved)

Key challenge: understanding how application characteristics impact effectiveness of dynamic power steering strategy

Example: Charged Particles within electric field

Proudly Operated by Battelle Since 1965

Example: Non-uniform distribution of particles (work)

Load-balancing of particles: Each sub-grid contains ~equal particles (work) & uniform power distribution

Dynamic Power Steering: Particles left in-place (no data movement), power allocation is optimized

Temporally varying load imbalance due to charged particle movement

Traditional approach: Load-balance particles over processors Power-Steering: particles left in place & power-balance over processors

Focus on exploring the possibilities of Dynamic Power Steering

- Need for Emulation: no power constrained system was available for our study
 - Mimic a power cap on a current system which is lower than the normal operating power.
 - Allow for core *p*-state to vary up or down using Heuristic
 - Overall power is constrained to be that of initial operating point
 - Improve performance along critical path

Test-bed platform:

- 36 nodes dual-socket, 8-core AMD Interlagos processors
- Power measurement @ 0.3Hz sampling rate (Outlet based)

Frequency (GHz)	Core Active Power (W)
2.1	21.1
1.7	18.0
1.4	15.6

$$P_{constrint} = CP_{base} \ge \sum_{i=1}^{N_{P-states}} C_i P_i$$

Three Synthetic workloads

Charged Field

Wavefront

Random

- Charged Field: particle positions vary over time due to application of electric field
- Wavefront: quadrant of circular wavefront propagates from corner of global grid
- Random: control case work load levels are assigned randomly

Variation in Computational Intensity & Load-imbalance

Power assignment heuristic

Proudly Operated by Battelle Since 1965

Start

- 1. *PWR_{max}* = maximum globally available power
- 2. p-state_{max} = highest performance *p*-state
- 3. $N_{work_max} = \max(N_{work_i}) \forall i \in \{P_i\}$
- 4. $t_{work_max} = N_{work_max} \times t_{work}(p-state_{max})$
- 5. $\forall i \in \{P_i \mid P_i <> P_{work_max}\}$ find slowest p-state such that $t_{work_i} < t_{work_max}$

6.
$$PWR_i = t_{work_i}(p-state_i)$$

- 7. $PWR_{global} = SUM (PWR(p-state_i))$
- 8. If $PWR_{global} > PWR_{max}$ then reduce p-state_{max} and go to step 3
- 9. Assign p-state calculated to each processor-core

End

Assign highest-performing *p*-state to cores with heaviest load, and then assign the lowest *p*-state to all others such that there is no increase in execution time

"On the Feasibility of Dynamic Power Steering", Barker, Kerbyson & Anger,August 12, 2015Energy Efficient Supercomputing (E2SC), SC'14, 2014.9

Results: Charged Field workload (runtime)

Proudly Operated by Battelle Since 1965

Run-time improves as critical path has more power applied

- Greater impact when compute than memory bound
- Greater impact as load-imbalance increases (balance decreases)
- Up to 27% energy savings obtained compared with operating point

Results: Charged Field workload (power)

Proudly Operated by Battelle Since 1965

Aim to keep power at the power cap

Due to quantization we mostly see a reduction in power use from the operating point

Summary of results

Average (and min/max) performance, power, and energy consumption results for all three workloads over the range in compute intensity, load-imbalance, and time-step.

- Performance is improved in all cases.
- Slight improvements in power consumption,
- Results in slightly greater improvements in overall energy efficiency.
- Wavefront exhibits greater improvements as a degree of load imbalance persists in all cases.

Conclusions

Exploration of Power steering has shown that power-balancing could replace load-balancing in a power constrained system

- Provide more power to processor-cores with more work
 - Leave work in place (no load-balancing)

Impact of dynamic power steering will increase with system scale

- Work in progress to use modeling to explore full potential of power-steering
 - Socket-level, rack-level and system-levels
 - CESAR co-design center exploring applications under development
 - Possible impact on workflows with wide-area distribution

Acknowledgements

Proudly Operated by Battelle Since 1965

Advanced Scientific Computing Research (ASCR) of the US Dept. of Energy

- Beyond the Standard Model (BSM)
- Performance Health Monitoring (PHM)
- DOE CESAR Exascale Co-design Center
- Advanced Computer Systems Research Program (ACS)