

Proudly Operated by Ballelle Since 1965

Using Palm For Analytical Performance Modeling

NATHAN TALLENT, KEVIN BARKER, DARREN KERBYSON, ADOLFY HOISIE

Pacific Northwest National Lab

Workshop on Modeling & Simulation of Systems & Applications

August 14, 2015

Modeling a Wavefront Application: Sweep3D

- Need more than static analysis
- Sweep3D: 2D pipeline
 - Wavefronts propagate in phases, yielding active and idle states
 - Runtime depends on phase, pipeline shape, & pipeline stage

f(shape, phase, stage)

- Pipeline formed dynamically
 - state variables and guarded code
- Palm assists modeling the critical path before it exists
 - express idle time as function of a pipeline stage's model
 - model critical path using a forward reference to a generated model

ranks

1

Walerron's

Palm assembles model using dynamic analysis & composition rules

 $f(\text{shape, phase, } \underline{M(\text{stage})}) \rightarrow \underline{f(\text{shape, phase})}$

time

High Energy Physics: Belle II Analysis Workflow

Predict & Mitigate Contention in Belle II Workflow

Palm creates workflow model by composing models for each module

Assessing the Impact of Silicon Photonics

Question: What is the impact of silicon photonics on graph-based workloads in the 4–6 year timeframe?

- Methodology
 - Work with architects; Identify silicon-photonics enabled systems
 - IBM TOPS (64 nodes, fully connected): photonics off node
 - Oracle Macronode (32 nodes, fully connected): photonics on & off node

Select workloads bound by network bandwidth and latency

- Compare silicon-photonics systems with electrical counterpart
 - fix footprint; fix power
 - Large, distributed graphs ("require a rack")
 - Validate at scale 34; Project at scale 40
 - Scale $\stackrel{\text{\tiny def}}{=} \log_2(\text{edges})$
- Models explore both performance and power

Model intra-node and inter-node data movement

Two Workloads To Represent Important Use Cases

Community Detection

- Input: Graph with weighted edges
- Output: Disjoint sets of related vertices
- Aggregated personalized all-to-all to send each edge's target info (~1 GB)
- Iterate until Δ-modularity < threshold</p>
 - Each vertex initially its own community
 - For each vertex, determine whether modularity increases by moving to neighboring community

Large, aggregated messages

- Optimized for cluster networks
- Combine reqs with same target vertex

More computation

- Modularity requires collectives
- Denser graph; aggregation cost

Using Palm...

Annotations convey insight about input graph

Capture important runtime properties. E.g.: probability that communities are formed

Swap network models

Convenient representation

Challenge: Help specialize model for graph input class

Conclusions

- Ease burden of modeling
 - Facilitate divide-and-conquer modeling strategy
 - Automatically incorporate dynamic structure
 - Generate contribution and error reports
- Enable first-class models
 - Coordinate models and source code
 - Functions unify annotations, generated models, and measurements
- Expressive: elegantly represent non-trivial critical paths
 - Annotations provide convenience within fully generic framework
 - Reproducible: generate same model given same input
 - Generate model according to well-defined rules
 - Define model structure from static & dynamic code structure
- Future: Especially interested in more dynamic assistance