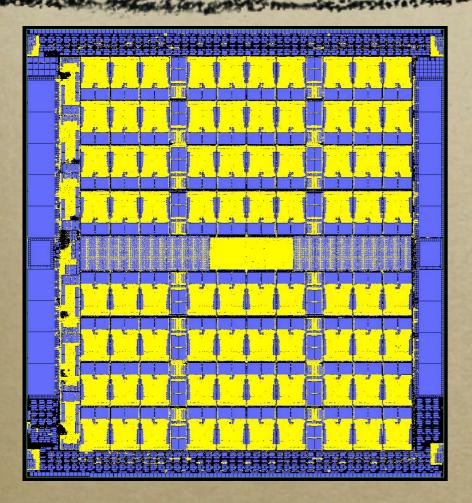
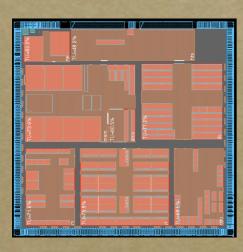
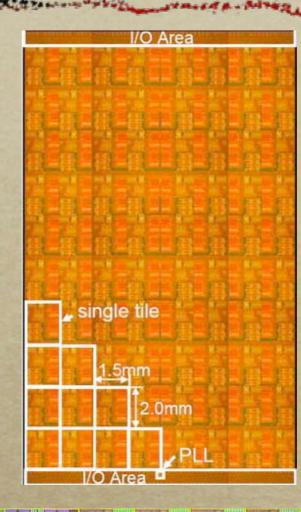
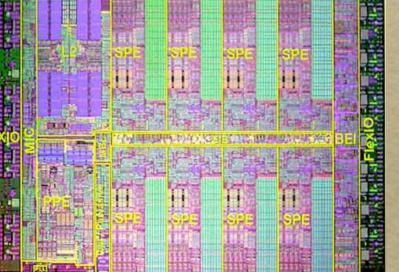
MTAAP'07 Keynote

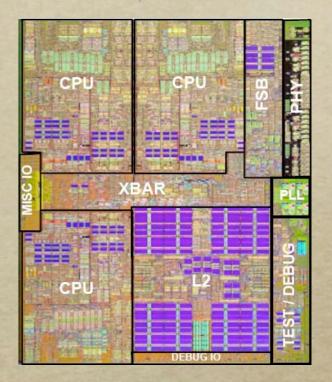
Michael Merrill

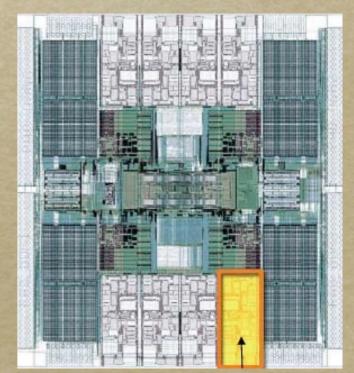

Outline


- What's important... applications
- Making sense... of all this stuff
- What's necessary... I think
- What's possible... maybe


What's important... applications


- Data Structures are important... more support for linked data structures
- Ignored algorithm areas are coming back to bite us
- Sparse methods on unstructured data
- Adaptive methods are better aligned with nature but not with current architecture
- Helping humans deal with information overload


Making sense... of all this stuff



Spectrum

Hardware contexts per set of functional units

all contexts to one set of functional units

one context to one set of functional units

MTA/XMT

UltraSparc T1

Cyclops64

Stuff

- Virtualization
 - How much is enough?
 - Fault tolerance
- How much baggage does a context have?
 Probably affects virtualization
- Synchronization

More Stuff

- Explicit memory hierarchy?
- I-cache! Don't make the programmer worry about code size!?!
- Commercial use vs. scientific use... vs. something else

Natural Bandwidth Boundaries

Bandwidth from a processor's point of view

KBs

Chip (~10mm)

Board (~100mm)

Cabinet (~1000mm)

TBs

Floor

Span of memory

Natural Bandwidth Boundaries

Bandwidth from a processor's point of view

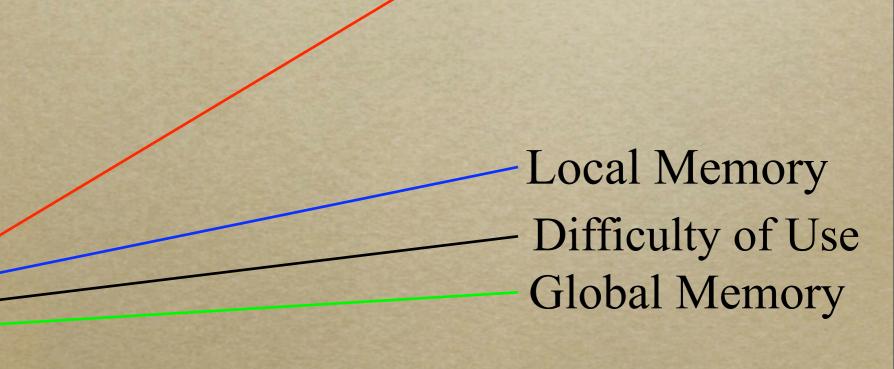
KBs

Chip (~10mm) — Near Board (~100mm)

Optics might merge Cabinet and Floor levels

Cabinet (~1000mm)

TBs


Far

Floor

Span of memory

Trends we live with...

Performance on a log scale

ALU

Time on a linear scale

Different Balance

- Costs have changed drastically
- Transistors are cheap... Wires are expensive
- Processor complexity vs. power is an issue
- Balance costs... apply transistors to use wires more effectively... not just for cache
- This is why you see architecture changing

What's necessary... I think

• Need to provide an effective system solution HW and SW!

 Why? Days of coarse grained scaling are at an end... so threads/contexts will necessarily work together to perform a task.

Fabrication

- Tiled architecture with partial good chips for lower costs
- Detect failed computation
- Retry failed computation
- Move away from fixed number of threads/ contexts

What's necessary... I think

Compiler and Runtime

Multi-ContextCoordinationProcessorSynchronization

 Need at least these three things working together to produce an effective environment for the application developer

Effective Software

Compiler and Runtime Multi-Context Processor

- Runtime that provides effective dynamic work management so the unbalanced nature of the application can be mitigated.
- Compiler that takes advantage of such a runtime increases programmer effectiveness and productivity allowing them to concentrate on the application.

Latency Tolerance/Management

Compiler and Runtime Multi-Context Coordination

Processor Synchronization

- Effective use of the bandwidth provided by the internal system networks through the use of latency tolerance and/ or latency management techniques.
- Many of these techniques require the exposure of abundant fine-grained parallelism in the application.

Low Overhead Coordination

Compiler and Runtime Multi-Context Processor

- Threads will necessarily work together to compute so effective coordination will be essential.
- Any cycles spent waiting on synchronization events are not spent computing and therefore decrease efficiency.

What's possible... maybe

 Don't look for any major companies to make things significantly better because it messes with the current business too much.

• Which direction to go?

Straight Forward Scaling

stand & . Mayo

- DL LARGER M

The The Desta A Fereis

	90nm	65nm	45nm	32nm	
TU	160	306	640	1266	• start with
FPU	80	153	320	633	Cyclops64
TU/XB	2	3	4	6	• 22x23mm die
XBar	80	102	160	211	0 22x25mm ute
Clock	500M	585M	684M	800M	• 150W to 190W
Perf	80G	179G	437G	1.01T	• 3DE ?
SRAM	4.8M	9.2M	19.2M	37.9M	

What About Software?

- Need good compiler technology to exploit on chip explicit memory
- Much higher level of abstraction
- Need to separate the how-to from the what-for but express both
- Diagnose hot spots (resource contention)
- etc...

• Questions? ... I have a ton ;-)