
MTAAP’07 Keynote
Michael Merrill



Outline

What’s important... applications
Making sense... of all this stuff
What’s necessary... I think
What’s possible... maybe



What’s important... applications

Data Structures are important... more support for 
linked data structures

Ignored algorithm areas are coming back to bite us

Sparse methods on unstructured data

Adaptive methods are better aligned with nature but 
not with current architecture

Helping humans deal with information overload



Making sense... of all this stuff



Spectrum

Hardware contexts per 
set of functional units

all contexts to 
one set of 

functional units

one context to 
one set of 

functional units

MTA/XMT UltraSparc T1 Cyclops64



Stuff

Virtualization
How much is enough?
Fault tolerance

How much baggage does a context have? 
Probably affects virtualization
Synchronization



More Stuff

Explicit memory hierarchy?
I-cache! Don’t make the programmer worry 
about code size!?!
Commercial use vs. scientific use... vs. 
something else



Natural Bandwidth Boundaries

Bandwidth
from a

processor’s
point of view

Span of memory

Chip (~10mm)

Board (~100mm)

Cabinet (~1000mm)

Floor

KBs TBs



Natural Bandwidth Boundaries

Bandwidth
from a

processor’s
point of view

Span of memory

Chip (~10mm)

Board (~100mm)

Cabinet (~1000mm)

Floor

Near

Far

KBs TBs

Optics might 
merge Cabinet and 

Floor levels



Trends we live with...

Performance
on a log scale

Time on a linear scale

Local Memory

ALU

Global Memory
Difficulty of Use



Different Balance

Costs have changed drastically

Transistors are cheap... Wires are expensive

Processor complexity vs. power is an issue

Balance costs... apply transistors to use 
wires more effectively... not just for cache

This is why you see architecture changing



What’s necessary... I think

Need to provide an effective system 
solution HW and SW!

Why? Days of coarse grained scaling are 
at an end... so threads/contexts will 
necessarily work together to perform a 
task.



Fabrication

Tiled architecture with partial good chips 
for lower costs

Detect failed computation

Retry failed computation

Move away from fixed number of threads/
contexts



What’s necessary... I think

Multi-Context 
Processor

Compiler and Runtime

Coordination 
Synchronization

Need at least these three things working together to 
produce an effective environment for the application 
developer



Effective Software

Multi-Context 
Processor

Coordination 
Synchronization

Compiler and Runtime

Runtime that provides effective dynamic work management 
so the unbalanced nature of the application can be 
mitigated.

Compiler that takes advantage of such a runtime increases 
programmer effectiveness and productivity allowing them 
to concentrate on the application.



Latency Tolerance/Management

Multi-Context 
Processor

Coordination 
Synchronization

Compiler and Runtime

Effective use of the bandwidth provided by the internal 
system networks through the use of latency tolerance and/
or latency management techniques.

Many of these techniques require the exposure of abundant 
fine-grained parallelism in the application.



Low Overhead Coordination

Multi-Context 
Processor

Coordination
Synchronization

Compiler and Runtime

Threads will necessarily work together to compute so 
effective coordination will be essential.

Any cycles spent waiting on synchronization events are not 
spent computing and therefore decrease efficiency.



What’s possible... maybe

Don’t look for any major companies to 
make things significantly better because 
it messes with the current business too 
much.
Which direction to go?



Straight Forward Scaling

90nm 65nm 45nm 32nm
TU 160 306 640 1266

FPU 80 153 320 633
TU/XB 2 3 4 6
XBar 80 102 160 211
Clock 500M 585M 684M 800M
Perf 80G 179G 437G 1.01T

SRAM 4.8M 9.2M 19.2M 37.9M

start with 
Cyclops64

22x23mm die

150W to 190W

3DE ?



What About Software?

Need good compiler technology to 
exploit on chip explicit memory
Much higher level of abstraction
Need to separate the how-to from the 
what-for but express both
Diagnose hot spots (resource contention)
etc...



Questions? ... I have a ton ;-) 


