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Our Contributions

• SWARM: SoftWare and Algorithms for 
Running on Multicore, a portable open-
source parallel framework for multicore
systems
– http://multicore-swarm.sourceforge.net/

• A library of fundamental parallel primitives: 
prefix-sums, list ranking, sorting and 
selection, symmetry breaking etc.

• Computational model for analyzing 
algorithms on multicore systems 

http://multicore-swarm.sourceforge.net/
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Talk Outline

• Introduction
• Model for algorithm design on multicore

systems
– Case studies
– Performance

• SWARM
– Programming framework
– Algorithm design
– Performance
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Multicore Computing

High-performance multicore programming 
requirements
– Exploit concurrency at the algorithmic level, and 

design efficient parallel algorithms
– Judiciously utilize memory bandwidth 
– minimize inter-processor communication, 

synchronization
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Multicore Computing

High-performance multicore programming 
requirements
– Exploit concurrency at the algorithmic level, and 

design efficient parallel algorithms
– Judiciously utilize memory bandwidth 
– minimize inter-processor communication, 

synchronization

Model for multicore algorithm design
SWARM: A Parallel Programming Framework
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Multicore Algorithm Design

• Architectural model: p homogeneous processing cores, 
dedicated L1 cache, shared L2 cache

• Memory Bandwidth of 
L1 cache > L2 cache > main memory
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Complexity Model

Algorithm complexity is given by
• Computational Complexity:

– RAM model of computation, complexity as a function of 
input size

• Memory accesses: 
– B: no. of blocks transferred from main memory to shared 

L2 cache, σ: bandwidth parameter
– Aggarwal-Vitter I/O model of computation

• Synchronization:
– S(n): complexity of synchronization operations (barriers, 

locks), L: synchronization overhead parameter

pipnT(n,p)T ciic ,...,1),,(max ==

1)( −= σnB(n)TM
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Multicore Algorithm Design

• Complexity is given by the tuple <TC,TM,TS>
• Cache-aware approaches

– Data layout optimizations, blocking/tiling, padding
– Merge Sort case-study

• Cache-oblivious algorithms
• Minimize synchronization overhead

– Lock-free algorithms, atomic operations

• All these paradigms considered in SWARM parallel 
primitives and library design
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Test Platform

• Sun Fire T2000 (UltraSparc T1 Niagara 
processor)
– 8 multithreaded cores
– 4 threads per core
– Shared 3MB on-chip L2 cache
– 1.0GHz clock speed
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Problem Size (in log scale)
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Tiling optimization benchmark: 
Performance on Sun Fire T2000
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SWARM

• Multicore programming framework and a 
collection of multicore-optimized libraries

• Portable, open-source
– http://multicore-swarm.sourceforge.net/
– Current: version 1.1

• Examples and efficient implementations of 
various parallel programming primitives
– Prefix-sums, pointer-jumping, divide and conquer, 

pipelining, graph algorithms, symmetry breaking

http://multicore-swarm.sourceforge.net/
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SWARM

• POSIX-threads based framework
• Support for parallel primitives 

– data parallel, control, memory management
– barrier, replicate, scan, broadcast 

• Incremental approach to parallelizing 
applications
– Minimal modifications to existing code
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Typical SWARM Usage

int main (int argc, char **argv) {
SWARM_Init(&argc, &argv);
/* sequential code */
....
....

SWARM_Run((void *) fun1(a, b));

/* more sequential code */
fun2(c,d);
....

SWARM_Finalize();
}

• C code

int main (int argc, char **argv) {

/* sequential code */
....
....

fun1(a, b);

/* more sequential code */
fun2(c,d);
....

}

Identify compute-
intensive functions

Parallelize with 
SWARM library
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Data parallelism: pardo directive

/* pardo example: partitioning a 
"for" loop among the cores */
pardo(i, start, end, incr) {

A[i] = B[i] + C[i];
}

• pardo: Parallel do, implicitly partitions a loop 
among the cores without the need for 
coordinating.

• SWARM provides both block and cyclic 
partitioning options
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Control

• SWARM control primitives restrict threads that can 
participate in a context.
// THREADS: total number of execution threads
// MYTHREAD: the rank of a thread, from 0 to 
// THREADS-1

/* example: execute code on a specific thread */
on_thread (3) {

....

....
}

/* example: execute code on just one thread */
on_one_thread {

...

...
}
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Memory management

• SWARM provides two directives 
– SWARM_ malloc: dynamically allocate a shared 

structure
– SWARM_free: release shared memory back to 

the heap

/* example: allocate a shared array of size n */
A = (int *)SWARM_malloc(n*sizeof(int),TH);

/* example: free the array A */
SWARM_free(A);
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Synchronization

• Barrier: SWARM_Barrier()
– Two variants

• Locks
– POSIX threads Mutex locks, user-level atomic 

locks
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Other communication primitives

• Broadcast: supplies each processing core with the address 
of the shared buffer by replicating the memory address.

• Reduce: performs a reduction operation with a binary 
associative operator, such as addition, multiplication, 
maximum, minimum, bitwise-AND, and bitwise-OR

/* function signatures */
int SWARM_Bcast_i (int myval, THREADED);
int* SWARM_Bcast_ip (int* myval, THREADED);
char SWARM_Bcast_c (char myval, THREADED);

/* function signatures */
int SWARM_Reduce_i(int myval, reduce_t op, 
THREADED);
double SWARM_Reduce_d(double myval, reduce_t op, 
THREADED);
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SWARM: Merge Sort Performance, Sun Fire T2000
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SWARM: List Ranking Performance, Sun Fire T2000
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SWARM: List Ranking Performance, Intel dual-core Xeon 5150
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Conclusions

• SWARM: SoftWare and Algorithms for Running on 
Multicore, a portable open-source parallel 
framework for multicore systems
– http://multicore-swarm.sourceforge.net/

• We present a complexity model for algorithm design 
on multicore systems
– It is critical to optimize memory access patterns and 

synchronization on multicore systems

• Future work: more SWARM libraries and primitives

http://multicore-swarm.sourceforge.net/

	SWARM: A Parallel Programming Framework for Multicore Processors
	Our Contributions
	Talk Outline
	Multicore Computing
	Multicore Computing
	Multicore Algorithm Design
	Complexity Model
	Multicore Algorithm Design
	Test Platform
	Tiling optimization benchmark: �Performance on Sun Fire T2000
	SWARM
	SWARM
	Typical SWARM Usage
	Data parallelism: pardo directive
	Control
	Memory management
	Synchronization
	Other communication primitives
	SWARM: Merge Sort Performance, Sun Fire T2000
	SWARM: List Ranking Performance, Sun Fire T2000
	SWARM: List Ranking Performance, Intel dual-core Xeon 5150
	Acknowledgment of Support
	Conclusions

