
SWARM: A Parallel Programming Framework
for Multicore Processors
David A. Bader, Varun N. Kanade and Kamesh Madduri

2

Our Contributions

• SWARM: SoftWare and Algorithms for
Running on Multicore, a portable open-
source parallel framework for multicore
systems
– http://multicore-swarm.sourceforge.net/

• A library of fundamental parallel primitives:
prefix-sums, list ranking, sorting and
selection, symmetry breaking etc.

• Computational model for analyzing
algorithms on multicore systems

http://multicore-swarm.sourceforge.net/

3

Talk Outline

• Introduction
• Model for algorithm design on multicore

systems
– Case studies
– Performance

• SWARM
– Programming framework
– Algorithm design
– Performance

4

Multicore Computing

High-performance multicore programming
requirements
– Exploit concurrency at the algorithmic level, and

design efficient parallel algorithms
– Judiciously utilize memory bandwidth
– minimize inter-processor communication,

synchronization

5

Multicore Computing

High-performance multicore programming
requirements
– Exploit concurrency at the algorithmic level, and

design efficient parallel algorithms
– Judiciously utilize memory bandwidth
– minimize inter-processor communication,

synchronization

Model for multicore algorithm design
SWARM: A Parallel Programming Framework

6

Multicore Algorithm Design

• Architectural model: p homogeneous processing cores,
dedicated L1 cache, shared L2 cache

• Memory Bandwidth of
L1 cache > L2 cache > main memory

7

Complexity Model

Algorithm complexity is given by
• Computational Complexity:

– RAM model of computation, complexity as a function of
input size

• Memory accesses:
– B: no. of blocks transferred from main memory to shared

L2 cache, σ: bandwidth parameter
– Aggarwal-Vitter I/O model of computation

• Synchronization:
– S(n): complexity of synchronization operations (barriers,

locks), L: synchronization overhead parameter

pipnT(n,p)T ciic ,...,1),,(max ==

1)(−= σnB(n)TM

LnS(n)Ts)(=

8

Multicore Algorithm Design

• Complexity is given by the tuple <TC,TM,TS>
• Cache-aware approaches

– Data layout optimizations, blocking/tiling, padding
– Merge Sort case-study

• Cache-oblivious algorithms
• Minimize synchronization overhead

– Lock-free algorithms, atomic operations

• All these paradigms considered in SWARM parallel
primitives and library design

9

Test Platform

• Sun Fire T2000 (UltraSparc T1 Niagara
processor)
– 8 multithreaded cores
– 4 threads per core
– Shared 3MB on-chip L2 cache
– 1.0GHz clock speed

10

Problem Size (in log scale)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

S
pe

ed
up

 a
ch

ie
ve

d
by

 th
e

ca
ch

e-
aw

ar
e

ap
pr

oa
ch

 o
ve

r t
he

 n
ai

ve
 a

pp
ro

ac
h

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

2 cores, 1 thread per core
4 cores, 1 thread per core
8 cores, 1 thread per core
8 cores, 2 threads per core

Tiling optimization benchmark:
Performance on Sun Fire T2000

11

SWARM

• Multicore programming framework and a
collection of multicore-optimized libraries

• Portable, open-source
– http://multicore-swarm.sourceforge.net/
– Current: version 1.1

• Examples and efficient implementations of
various parallel programming primitives
– Prefix-sums, pointer-jumping, divide and conquer,

pipelining, graph algorithms, symmetry breaking

http://multicore-swarm.sourceforge.net/

12

SWARM

• POSIX-threads based framework
• Support for parallel primitives

– data parallel, control, memory management
– barrier, replicate, scan, broadcast

• Incremental approach to parallelizing
applications
– Minimal modifications to existing code

13

Typical SWARM Usage

int main (int argc, char **argv) {
SWARM_Init(&argc, &argv);
/* sequential code */
....
....

SWARM_Run((void *) fun1(a, b));

/* more sequential code */
fun2(c,d);
....

SWARM_Finalize();
}

• C code

int main (int argc, char **argv) {

/* sequential code */
....
....

fun1(a, b);

/* more sequential code */
fun2(c,d);
....

}

Identify compute-
intensive functions

Parallelize with
SWARM library

14

Data parallelism: pardo directive

/* pardo example: partitioning a
"for" loop among the cores */
pardo(i, start, end, incr) {

A[i] = B[i] + C[i];
}

• pardo: Parallel do, implicitly partitions a loop
among the cores without the need for
coordinating.

• SWARM provides both block and cyclic
partitioning options

15

Control

• SWARM control primitives restrict threads that can
participate in a context.
// THREADS: total number of execution threads
// MYTHREAD: the rank of a thread, from 0 to
// THREADS-1

/* example: execute code on a specific thread */
on_thread (3) {

....

....
}

/* example: execute code on just one thread */
on_one_thread {

...

...
}

16

Memory management

• SWARM provides two directives
– SWARM_ malloc: dynamically allocate a shared

structure
– SWARM_free: release shared memory back to

the heap

/* example: allocate a shared array of size n */
A = (int *)SWARM_malloc(n*sizeof(int),TH);

/* example: free the array A */
SWARM_free(A);

17

Synchronization

• Barrier: SWARM_Barrier()
– Two variants

• Locks
– POSIX threads Mutex locks, user-level atomic

locks

18

Other communication primitives

• Broadcast: supplies each processing core with the address
of the shared buffer by replicating the memory address.

• Reduce: performs a reduction operation with a binary
associative operator, such as addition, multiplication,
maximum, minimum, bitwise-AND, and bitwise-OR

/* function signatures */
int SWARM_Bcast_i (int myval, THREADED);
int* SWARM_Bcast_ip (int* myval, THREADED);
char SWARM_Bcast_c (char myval, THREADED);

/* function signatures */
int SWARM_Reduce_i(int myval, reduce_t op,
THREADED);
double SWARM_Reduce_d(double myval, reduce_t op,
THREADED);

19

SWARM: Merge Sort Performance, Sun Fire T2000

20

SWARM: List Ranking Performance, Sun Fire T2000

21

SWARM: List Ranking Performance, Intel dual-core Xeon 5150

22

Acknowledgment of Support

• National Science Foundation
– CSR: A Framework for Optimizing Scientific Applications (06-14915)
– CAREER: High-Performance Algorithms for Scientific Applications (06-11589; 00-93039)
– ITR: Building the Tree of Life -- A National Resource for Phyloinformatics and

Computational Phylogenetics (EF/BIO 03-31654)
– ITR/AP: Reconstructing Complex Evolutionary Histories (01-21377)
– DEB Comparative Chloroplast Genomics: Integrating Computational Methods, Molecular

Evolution, and Phylogeny (01-20709)
– ITR/AP(DEB): Computing Optimal Phylogenetic Trees under Genome Rearrangement

Metrics (01-13095)
– DBI: Acquisition of a High Performance Shared-Memory Computer for Computational

Science and Engineering (04-20513).
• IBM PERCS / DARPA High Productivity Computing Systems (HPCS)

– DARPA Contract NBCH30390004
• IBM Shared University Research (SUR) Grant
• Sony-Toshiba-IBM (STI)
• Microsoft Research
• Sun Academic Excellence Grant

http://www.toshiba.com/tai-new/index.jsp

23

Conclusions

• SWARM: SoftWare and Algorithms for Running on
Multicore, a portable open-source parallel
framework for multicore systems
– http://multicore-swarm.sourceforge.net/

• We present a complexity model for algorithm design
on multicore systems
– It is critical to optimize memory access patterns and

synchronization on multicore systems

• Future work: more SWARM libraries and primitives

http://multicore-swarm.sourceforge.net/

	SWARM: A Parallel Programming Framework for Multicore Processors
	Our Contributions
	Talk Outline
	Multicore Computing
	Multicore Computing
	Multicore Algorithm Design
	Complexity Model
	Multicore Algorithm Design
	Test Platform
	Tiling optimization benchmark: �Performance on Sun Fire T2000
	SWARM
	SWARM
	Typical SWARM Usage
	Data parallelism: pardo directive
	Control
	Memory management
	Synchronization
	Other communication primitives
	SWARM: Merge Sort Performance, Sun Fire T2000
	SWARM: List Ranking Performance, Sun Fire T2000
	SWARM: List Ranking Performance, Intel dual-core Xeon 5150
	Acknowledgment of Support
	Conclusions

