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* The objective of the Influence Maximization Problem (Inf-Max) is to identify a
small set of individuals in a social network, which when activated, will very
likely result in the activation of the maximum number of vertices

* Problem statement coming from the social sciences

v Pedro M. Domingos and Matthew Richardson. “Mining the network value of customers”. In:

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining, San Francisco, CA, USA, August 26-29, 2001. ACM, 2001, pp. 57-66

= How does (word-of-mouth) information propagate?
= Who are the key individuals that optimize the information diffusion?




Applications of Influence Maximization

oo

2 Ya ~ S8

Computational Atmospheric
Biolo Chemistry

Sam Silva

Transportation National and
Networks Cyber Security

Arun Sathanur



o

Pacific

Northwest  |nfluence Maximization: Problem Definition

* Given: A graph G(V, E), a diffusion model (how a vertex gets activated based
on the state of its neighbors), and a budget k, the influence maximization
problem is stated as follows:

4 . . C : )
* Find a set of k vertices called the seed set S, that when initially activated

result in maximal activations on the network amongst all possible sets of k

_ vertices y

e Two diffusion models studied in our work:

= Linear Threshold: A vertex can get activated if a fraction of neighboring vertices that
are active is greater than a threshold A,

= Independent Cascade: One shot chance for an activated vertex to activate its
neighbor
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» Uses the sub-modularity property of the Influence Function

* Approximation Factor: (1-1/e) - €

-
1. Generate a set of n random samples SG a

» Different instantiations of G are computed based on the edge
\ probabilities

(2. Repeat until k most influential nodes are chosen:

1. Compute the influence of all remaining nodes across different
samples w.r.t. the current seed set S e

2. Pick the best influential node, and add to S

\_

VAN

Kempe, David, Jon Kleinberg, and Eva Tardos. "Maximizing the spread of influence through a social network.”
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003.
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"Who is influencing me?” instead of "Who am | influencing?”

* Decide the number of experiments
« Generating the reverse reachability information with graph explorations

» Greedy seed selection Input : G, k, €

Output: S

« EstimateTheta builds on begin

(R, #) < EstimateTheta(G, k, €)
Sample and SeedSelect R + Sample(G, 0 — [R|, R)

S < SelectSeeds(G, k, R)
return S

end

Tang, Youze, Yanchen Shi, and Xiaokui Xiao. "Influence maximization in near-linear time: A martingale approach.”
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015.
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* Approximation Factor: (1 - 1/e) - €

* Algorithms are computationally expensive
(high order polynomial for the greedy hill
climbing approach of Kempe et al.)

e Alternative methods (random reverse

reachable paths) are memory and compute
intensive (HPC)

* Nonlinear growth in work relative to
approximation factor (g) and number of seeds

required (k)
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Nortwest  DGX-1 Volta N
. 8 x V100 GPUs, NVLINK2 . 3
e 5120 CUDA Cores/640 Tensor [25] H
Cores/4096-bit memory bus/16
GB HBM2

PCle Switches PCle Switches

 GPUs not fully interconnected

(some at 2 hops)
* Not all GPUs with peer-to-peer
atomic memory operations

V100 has 6 peer-to-peer links,
some connections are faster

From the DGX-1 System Architecture Manual
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NVLink 2.0 Sierra Node

[/l [/l
2 Power9 CPUs with a total of 128 logical ;;’,&.g '8%": ,e,;,&n ,3;?‘,3
cores per system e
. 4 NVIDIA V100 GPUs with NVLINK2 (16GB [ e
» 3 links (GPU-GPU, CPU-GPU) mm— | o | o R —
- X-Bus allows atomic memory operations for = g ——
GPUs connected to different sockets e e D  —
" st e [ e
+ 1TB of system memory per node 80| reouon
» EDR Infiniband internal network =L

s | [ || ven [N S | W |
| RJ-45 uss UsB uss 2x125GB/s
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/ Summit “Witherspoon” Node

(2) IBM Power9 + (6) NVIDIA Volta V100

| e | | e
4 13sGBss 4 13568

CPUO CPU 1
| 0(0-3) | | 7 (28-31) | | (56-59) | | (88-91) | | 29 (116-119) | | 36 (144-147) |
[ 1en ][ se23s ]| (60-63) | [ 280205 | [[s0(t20-123) | [ 87 (tae-151) |
TESLA v1 00 [ 2610 ] [ oess9 | [ 1e6sen | 64 GBJs [ 240899 | [[310124-120) | [38(152:155) |
[[30215) ] [ 10wo43) | [ 17871 | 4 [[25(00-103) | [ 32(128131) | [ 39 (156-159) |
| 4(16-19) | | 11 (44-47) | | (72-75) | | 26 (104-107) | | 33 (132-135) | | 40 (160-163) |
21B transisgors | 5 (20-23) | | 2 (48-51) | | (76-79) | | 27 (108-111) | | 34 (136-139) | | 41 (164-167) |
815 mm | 6 (24-27) | | 13 (52-55) | | 20 (80-83) | | 28 (112-115) | | 35 (140-143) | | 42 (168-171) |

640 Tensor Cores
GPU O |¢m)| GPU 1 || GPU 2 GPU 3 |¢m)| GPU4 || GPU5
} 4 H 4 ! 4
16 GB 16 GB 16 GB 16 GB 16 GB 16 GB
K NVLink2 s (100 GBJs) 1 (900 GBIs)

Single GPU Single Node Distributed Multi-GPU Cluster

(2048 x 80 threads) (6 GPUs) (4608 nodes)
)

16 GB HBM2
900 GB/s HBM2
300 GB/s NVLink

2048 Threads 80 SMs 6 GPUs

SM *"GPU "~ Node

X 4608 Nodes= 4.5 Billion GPU Threads
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* The engine instantiates a thread pool
= Usually 1 thread per core on the CPUs of system

« Each GPU has a dedicated CPU thread offloading work with the possibility to
over-subscribe

= More than 1-thread pushing work to the same device (Hyper-Q)

* The engine builds a representation of the topology of GPUs
= To structure reductions between GPUs
= Topology built query the CUDA runtime

 CPU and GPU workers steal from the same “task queue”
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o
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Two different strategies for IC and LT models

2 100004

Number of RRR (#)

» Each GPU thread performs a randomized BFS, but is limited

For the LT model soco] o

to visit 8 vertices at most
= \When the limit is exceeded the tasks is invalidated and

LT model

replayed on the CPU

* For the |IC model
= Parallel BFS derived from the nvgraph. g

Each worker has Parallel Random Number Generator ..
= Sequences split with the leap-frog scheme
» GPU threads do round-robin among them
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* Greedily select the covering the greatest number of RRR sets
= Build a histogram of the vertices occurrences for those not yet selected as seeds

* The histogram can be updated or rebuilt from scratch
= Partition the RRR in covered and uncovered
= Rebuild works on the uncovered
= Update works on the newly covered.

 CPU and GPU histograms are then reduced

» GPUs use a local histogram later reduced using a tree reduction
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Results

Experimental Results: Strong scaling on Summit
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Fig. 4: Summit IC Model. Parameters: € = 0.13, k& = 100.
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Figure 2: DGX-1v IC Model (¢ = 0.5, k = 100). The configuration reports the number of CPU workers(C) and GPU workers(G)
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* Scalable implementations (shared and distributed memory systems)

https://github.com/pnnl/ripples TABLE II: Comparative evaluation of cuRipples relative
to previous implementations of IMM—both serial (IMMg)
£=0.50, k=100 [2] and parallel (IMMpymyedison) [3]. Abbreviations used: No.
) 28024.56 Cores (C), GPUs (G), Nodes (N).
E System Time (s) Speedup Scale
£ com-Orkut (e=0.5.k=100)

g, MM, 28024.56 1.00x 1C
= IMM,, 9027.50 3.10x 1C
5 IMM,;, 1319.21 21.24 % 20C (1N)

& ke £=0.13, k=200 CuRipples,,, |, 3547  790.09x R0C+8G (1N)

S CuRipples, e 4372 641.00x 128C+4G (IN)

2 com-Orkut (e=0.13,k=200)

‘ IMM_gicon 294.51 95.16 % 3,072C (64N)

£ IMM_gison 4777  586.61x 49,152C (1024N)
B @a 2N | ' CuRipples,,mmi 3630  772.03x  2.688C+384G (64N)
n’: &35’47\ . soc-LiveJournall (¢=0.5,k=100)

& S » N IMM, 16434.81 1.00x 1C
& ‘,\%’} ‘\0‘# oy MM, 395459  4.16x 1C
S N & & MM, 1026.21 16.02x 20C

qbd} Q;\@ CuRipplesgg,. 1, 70.23 234.01x 80C+8G (1N)
(o (o CuRipples,eyell 6526  251.84x 128C+4G (IN)
soc-LiveJournall (¢=0.13,k=200)
‘ : : IMM_.gicon 19094  86.07x 3,072C (64N)

CuRipples achieves a speedup of 790x over a state-of-the-art serial MM, 5512  208.16% 49192 (1024N)

implementation, while also significantly improving the quality. CuRipplessummit 10643  154.42x  2,688C+384G (64N)

The input network is com-Orkut.


https://github.com/pnnl/ripples
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https://github.com/pnnl/ripples
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