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The Influence Maximization Problem

• The objective of the Influence Maximization Problem (Inf-Max) is to identify a 
small set of individuals in a social network, which when activated, will very 
likely result in the activation of the maximum number of vertices

§ Problem statement coming from the social sciences
ü Pedro M. Domingos and Matthew Richardson. “Mining the network value of customers”. In: 

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and 
data mining, San Francisco, CA, USA, August 26-29, 2001. ACM, 2001, pp. 57–66 

§ How does (word-of-mouth) information propagate?
§ Who are the key individuals that optimize the information diffusion?

Algorithms
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Applications of Influence Maximization

Computational 
Biology

Atmospheric 
Chemistry

Transportation 
Networks

National and 
Cyber Security

Madelyn Dunning

Sam SilvaJason McDermott

Arun Sathanur
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Influence Maximization: Problem Definition

• Given: A graph G(V, E), a diffusion model (how a vertex gets activated based 
on the state of its neighbors), and a budget k, the influence maximization 
problem is stated as follows:

• Find a set of k vertices called the seed set S, that when initially activated 
result in maximal activations on the network amongst all possible sets of k
vertices

• Two diffusion models studied in our work:
§ Linear Threshold: A vertex can get activated if a fraction of neighboring vertices that 

are active is greater than a threshold 𝛌v
§ Independent Cascade: One shot chance for an activated vertex to activate its 

neighbor
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The Greedy Hill Climbing Algorithm

1. Generate a set of n random samples SG
§ Different instantiations of G are computed based on the edge 

probabilities

2. Repeat until k most influential nodes are chosen: 
1. Compute the influence of all remaining nodes across different 

samples w.r.t. the current seed set S
2. Pick the best influential node, and add to S

1

2

• Uses the sub-modularity property of the Influence Function

• Approximation Factor: (1-1/e) - 𝛆

Kempe, David, Jon Kleinberg, and Éva Tardos. "Maximizing the spread of influence through a social network.”
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003.



The IMM algorithm

• Decide the number of experiments
• Generating the reverse reachability information with graph explorations
• Greedy seed selection

• EstimateTheta builds on
Sample and SeedSelect

”Who is influencing me?” instead of ”Who am I influencing?”

Input : G, k, ✏
Output: S
begin

hR, ✓i  EstimateTheta(G, k, ✏)
R  Sample(G, ✓ � |R|, R)
S  SelectSeeds(G, k, R)
return S

end

Tang, Youze, Yanchen Shi, and Xiaokui Xiao. "Influence maximization in near-linear time: A martingale approach.”
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015.
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Influence Maximization: Challenges

• Approximation Factor: (1 - 1/e) - 𝛆
• Algorithms are computationally expensive 

(high order polynomial for the greedy hill 
climbing approach of Kempe et al.)

• Alternative methods (random reverse 
reachable paths) are memory and compute 
intensive (HPC)

• Nonlinear growth in work relative to 
approximation factor (𝛆) and number of seeds 
required (k)
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DGX-1 Volta

From the DGX-1 System Architecture Manual

• 8 x V100 GPUs, NVLINK2
• 5120 CUDA Cores/640 Tensor 

Cores/4096-bit memory bus/16 
GB HBM2

• GPUs not fully interconnected 
(some at 2 hops)
• Not all GPUs with peer-to-peer 

atomic memory operations

• V100 has 6 peer-to-peer links, 
some connections are faster

Architectures
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Newell@PNNL

• 2 Power9 CPUs with a total of 128 logical 
cores per system

• 4 NVIDIA V100 GPUs with NVLINK2 (16GB 
per GPU)

• 3 links (GPU-GPU, CPU-GPU)

• X-Bus allows atomic memory operations for 
GPUs connected to different sockets

• 1TB of system memory per node

• EDR Infiniband internal network
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Summit: Unprecedented Parallelism

𝟐𝟎𝟒𝟖 Threads
SM x

𝟖𝟎 SMs
GPU x

𝟔 GPUs
Node x 𝟒𝟔𝟎𝟖 Nodes= 4.5 Billion GPU Threads

Single GPU 
(2048 x 80 threads)

Single Node
(6 GPUs)

Distributed Multi-GPU Cluster 
(4608 nodes)

CPU 0
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34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)
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cuRipples: The CPU-GPU Dispatching Engine

• The engine instantiates a thread pool
§ Usually 1 thread per core on the CPUs of system

• Each GPU has a dedicated CPU thread offloading work with the possibility to 
over-subscribe
§ More than 1-thread pushing work to the same device (Hyper-Q)

• The engine builds a representation of the topology of GPUs
§ To structure reductions between GPUs
§ Topology built query the CUDA runtime

• CPU and GPU workers steal from the same “task queue”

Implementation
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Sampling

• Two different strategies for IC and LT models
• For the LT model

§ Each GPU thread performs a randomized BFS, but is limited 
to visit 8 vertices at most

§ When the limit is exceeded the tasks is invalidated and 
replayed on the CPU

• For the IC model
§ Parallel BFS derived from the nvgraph.

• Each worker has Parallel Random Number Generator
§ Sequences split with the leap-frog scheme
§ GPU threads do round-robin among them
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Seed Selection

• Greedily select the covering the greatest number of RRR sets
§ Build a histogram of the vertices occurrences for those not yet selected as seeds

• The histogram can be updated or rebuilt from scratch
§ Partition the RRR in covered and uncovered
§ Rebuild works on the uncovered
§ Update works on the newly covered.

• CPU and GPU histograms are then reduced
§ GPUs use a local histogram later reduced using a tree reduction
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Experimental Results: Strong scaling on Summit

Results
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Experimental Results on DGX-1 with V100
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Summary of our contributions

• Scalable implementations (shared and distributed memory systems) 
https://github.com/pnnl/ripples

• Novel models and applications

CuRipples achieves a speedup of 790x over a state-of-the-art serial 
implementation, while also significantly improving the quality. 

The input network is com-Orkut.

https://github.com/pnnl/ripples
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