
- 1 -

Aydın Buluç
Computational Research Division, LBNL
EECS Department, UC Berkeley

February 28, 2019
SIAM CSE, Spokane, WA

Communication-Avoiding Sparse Matrix
Algorithms for Large Graph and Machine

Learning Problems

Large Graphs in Traditional Scientific Computing

- 2 -

1 52 3 4
1

5

2
3
4

A

1

5

2

3

4

1

5

2

3

4

1 52 3 4
4

2

5
3
1

PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

What are sparse matrices?

- 3 -

“I observed that most of the coefficients in our
matrices were zero; i.e., the nonzeros were ‘sparse’ in
the matrix, and that typically the triangular matrices
associated with the forward and back solution
provided by Gaussian elimination would remain
sparse if pivot elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Graphs in the language of sparse matrices

- 4 -

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism:

– searches, vertices, edges

FAT

à

AT F 6

1 2

3

4 7 5

This multi-source breadth-first
traversal leads to a highly-parallel
implementation for betweenness
centrality (measure of influence in
graphs, based on shortest paths)

Graph coarsening via sparse matrix products

1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0
1 1
1 1

0 0 1

A1

A2 A3

x x =
2

1
2 1

Buluç and Gilbert. Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments. SISC, 2012.

The case for sparse matrices

- 6 -

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

More on http://graphblas.org

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

“Our mission is to build up a linear
algebra sense to the extent that vector-
level thinking becomes as natural as
scalar-level thinking.”

- Charles Van Loan

http://graphblas.org/

GraphBLAS Status: C API 1.2 released and in use
• Implementations of the GraphBLAS C specification:

– SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html

– IBM https://github.com/IBM/ibmgraphblas

– Test suite for validating an implementation of the C-spec from SEI/CMU (… to be released “soon”)

• Systems using the GraphBLAS

– RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis Module, using GraphBLAS sparse

matrices for internal data representation and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/

– Lincoln Labs GraphProcessor designed around the GraphBLAS.

• C++ bindings to the GraphBLAS

– GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl

– GraphBLAST (GPUs): https://github.com/gunrock/graphblast

A. Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.2.0

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://redislabs.com/blog/release-redisgraph-v1-0-preview/
https://github.com/cmu-sei/gbtl
https://github.com/gunrock/graphblast

Protein Clustering with Markov Clustering (MCL)

- 8 -

8

MCL is a widely popular and successful algorithm for discovering clusters in protein
interaction and protein similarity networks. It is robust against perturbations

At each iteration:
Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

After Convergence:
• Find connected components

of the final graph (matrix)
• Return them as clusters

HipMCL: Combined Expand, Inflate, Prune Cycle
• HipMCL is a high-performance distributed memory parallel implementation of MCL
• HipMCL relies on state of the art parallel sparse matrix operations of Combinatorial BLAS

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

b: number of columns constructed at once, dynamically selected based on memory
– Smaller b: less parallelism, memory efficient (b=1 ~ SpMSpV used in MCL)
– Larger b: more parallelism, memory intensive (also more communication-efficient)

Azad, Pavlopoulos, Ouzounis, Kyrpides, Buluç. HipMCL: A high-performance parallel implementation of the Markov
clustering algorithm for large-scale networks (Nucleic Acids Research, 2018).

Parallel Sparse Matrix Products in HipMCL

- 10 -

• MCL process is both computationally expensive and memory hungry, limiting the sizes of
networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms.
• Up to 1000X times faster than original MCL with same accuracy.

x =

!"## !"$#

!### !#$#

!$## !$$#

!""#

!#"#

!$"#

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process	Gridp × p

• HipMCL 1.0 uses a 2D algorithm for computing sparse matrix products (SpGEMM)
• It uses a memory scalable multithreaded heap-based implementation for in-node SpGEMM

HipMCL Impact and Future Work

- 11 -

11

Data Proteins Edges #Clusters HipMCL time platform

Isolate-1 47M 7 B 1.6M 1 hr 1024 nodes Edison

Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes Edison

Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes Cori KNL

MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes Cori KNL

Impact:
• MCL can not cluster these networks
• Several novel protein families from metagenomic data are also discovered using HipMCL
Future/ongoing work:
• Generating protein similarity networks directly in distributed memory
• GPU support and integration of 3D SpGEMM to HipMCL.

LACC: Linear Algebraic Connected Components

Parallel connected components for cluster identification (after MCL iterations converge):

Awerbuch-Shiloach algorithm using SpMSpV and a few other GraphBLAS operations

1

4

16

64

256

1024

4 16 64 256

Ti
m

e
(s

)

Number of KNL nodes (68 cores per node)

V=3M E=360M CC=160K

LACC Parconnect

Eukarya Proteins

2.3x
Eukarya

Impact: More than 2x faster connected component identification across different scales.

Orders of magnitude faster at large concurrencies, enabling continued scaling of HipMCL by

removing this potential Amdahl’s bottleneck.

4096 16384 65536 262144
Number of Cores

4

16

64

256

1024

4096

16384

Ti
m

e
(s

ec
)

Metaclust50 (LACC)
iso_m100 (LACC)
Metaclust50 (ParConnect)
iso_m100 (ParConnect)

• Exploiting sparsity
was the key to
performance and
scaling

• Implemented using
Combinatorial BLAS

Azad, Buluç. LACC: a linear-algebraic algorithm for finding connected components in distributed memory (IPDPS 2019)

BELLA: Berkeley Long-read to Long-read Aligner
• Long reads from PacBio and Oxford Nanopore have the potential to revolutionize de-novo assembly
• Overlap-Consensus-Layout paradigm is more suitable than de Bruijn graph paradigm.
• Overlapping is the most computationally expensive step.

R1 R2 R3 R4 R5

R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

K1 K2 K3 K4 K5

K1

K2

K3

K4

K5

1

2

A AT

Read overlapping
using shared k-mers is
computing a sparse
matrix product, for
which we know good
algorithms and
implementations

BELLA addresses:
- How to choose the right set of k-mers, otherwise there are too many of them?
- How to use alignment score to tell true alignments from false positives?

Giulia Guidi
gguidi@berkeley.edu

!1

Proposed model

!

Number of states:
Legend:

State: correct bases on readi and readj

Slides by Giulia Guidi
giulia.guidi@mail.polimi.it

!1Proposed model

0 1 3

 i
State: correct bases on
readi and on readj

For the sake of simplicity here k is equal to 5

Legend of transition probabilities:
States number:

2

4 5
! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

Guidi, Ellis, Rokhsar, Yelick, Buluç. BELLA: Berkeley efficient long-read to long-read aligner and overlapper. (bioRxiv, 2018)

New Shared-Memory SpGEMM Kernels

Nagasaka, Matsuoka, Azad, Buluc. High-performance sparse matrix-matrix products on intel KNL and multicore architectures. ICPPW’18

• Compression ratio (CR): flops/nnz(C)
• Combinatorial BLAS and HipMCL uses heap
• Stable performance but significant gap in high CR
• HipMCL inputs have high CR
• New hash implementation gives significant boost

Impact of integrating hash implementation to HipMCL
(single node KNL results)

6.4. Empirical Recipe for SpGEMM on KNL
From our evaluation results, best algorithm is di↵erent by

target use case and inputs. We summarize the recipe to choose
best algorithm for SpGEMM on KNL in Table 4. The recipe
for real data is based on compression ratio, which e↵ects the
dominant code. For low compression ratios, especially L · U
where output is sparser, Heap shines. In the other cases, Hash
and MKL-inspector dominate the high-compression ratio
scenarios because Hash has better locality of memory access
to hash-table on high compression ratio matrices and can keep
low cache miss ratio. On synthetic data, our hash-table-based
implementations dominate others for almost cases, and Heap
works well for sparser matrices or uniform data. We note that
A2 for uniform input matrices shows low compression ratio.
Also, the performance gap between Hash and HashVector
comes from how many hash collisions occur in each algorithm.
This empirical recipe was already predicted by our analysis in
Section 4.2.4.

7. Impact on the HipMCL clustering software

HipMCL [3] is a high-performance distributed-memory
implementation of the Markov cluster algorithm, which itself
is commonly used for clustering protein similarity networks.
The algorithm performs concurrent random walks from all
vertices, which is implemented by squaring the sparse
similarity matrix. In the context of protein similarity networks,
compression ratios are often high in the first few iterations but
they drop rapidly as the algorithm starts to converge. An
overwhelming majority of the time is spent during those first
few iterations. The current implementation of HipMCL uses
the Heap SpGEMM implementation within Combinatorial
BLAS [33]. We expect that hash algorithm can provide a
significant performance boost because most of the time is
spent in iterations with high compression ratios.

The results, shown in Table 5, support our hypothesis. The
Hash algorithm is up to 10X faster than the Heap algorithm for
the SpGEMM time alone. The Hash SpGEMM algorithm
accelerates the whole HipMCL pipeline by up to a factor of
2.6X. These impressive performance improvements have
significant positive implications because HipMCL is often
used in really large datasets that take several hours to cluster
on O(1000) of nodes.

In addition to testing the Hash algorithm, we also
implemented a hybrid algorithm that chooses Hash or Heap
SpGEMM implementation depending on the compression
ratio. Instead of making a single coarse decision per iteration,
our Hybrid algorithm estimates the compression ratios for each
column and chooses a di↵erent implementation per column.
Specifically, if the compression ratio of the column is larger
than 2, then it uses the Hash algorithm. Otherwise, it uses the
Heap algorithm. This threshold of 2 is motivated by the
experimental data shown earlier in Figure 12. The hybrid
algorithm performs only marginally better than the Hash
algorithm. This has two reasons. First, an overwhelming
majority of the time is spent in high compression ratio

Table 5: Execution time of HipMCL application on single KNL node using
Heap, Hash and Hybrid algorithms [sec]

Dataset Target Heap Hash Hybrid
Viruses SpGEMM 20.38 5.14 5.13

Total 62.59 47.87 47.77
Archaea SpGEMM 7700.50 717.07 716.42

Total 11535.00 4550.22 4539.07
Eukarya SpGEMM 18448.10 1941.93 1964.34

Total 26717.00 10241.60 10284.80

computations, thus there is limited benefit that can be gained
by choosing a di↵erent algorithm in the other regime. Second,
Hash algorithm is only slightly worse than the Heap algorithm
for low compression ratio scenarios.

However, we believe that this Hybrid approach might be
more valuable in other iterative applications that thread a finer
line between low and high compression ratio computations.
One potential candidate is the multi-source betweenness
centrality implementation [2, 34] that uses SpGEMM as its
computational workhorse.

8. Conclusions

We studied the performance of computing the
multiplication of two sparse matrices on Intel architectures.
This primitive, known as SpGEMM, has recently gained
attention in the GPU community, but there has been relatively
less work on other accelerators. We have tried to fill that gap
by evaluating publicly accessible implementations, including
those in proprietary libraries. From architecture point of view,
we develop the optimized Heap and Hash SpGEMM
algorithms for Intel architectures. Performance evaluation
shows that our optimized SpGEMM algorithms largely
outperform Intel MKL and Kokkos-kernel.

Our work provides multiple recipes. One is for the
implementers of new algorithms on highly-threaded x86
architectures. We have found that the impact of memory
allocation and deallocation to be significant enough to warrant
optimization as without them SpGEMM performance does not
scale well with increasing number of threads. We have also
uncovered the impact of MCDRAM for the SpGEMM
primitives. When the matrices are sparser than a threshold (⇡ 4
nonzeros on average per row), the impact of MCDRAM is
minimal because in that regime the computation becomes
close to latency bound. On the other hand, MCDRAM shines
as matrices get denser because then SpGEMM becomes
primarily bandwidth bound and can take advantage of the
higher bandwidth available on MCDRAM. The second recipe
is for the users. Our results show that di↵erent codes dominate
on di↵erent inputs. We clarify which SpGEMM algorithm
works well by building performance model and showing
detailed performance results and profiling data. For example,
MKL is a perfectly reasonable option for small matrices with
uniform nonzero distributions. However, our heap and
hash-table-based implementations dominate others for larger

13

Role of Matrix Operations in Machine Learning

- 15 -

Sparse x
Dense Matrix

(SpDM3)

Sparse x
Sparse Matrix

(SpGEMM)

Sparse Matrix-
Multiple Dense

Vectors
(SpMM)

Sparse Matrix-
Dense Vector

(SpMV)

Sparse Matrix-
Sparse Vector

(SpMSpV)

Graph/Sparse/Dense BLAS functions (in increasing arithmetic intensity)

Partial Correlation
Estimation

(CONCORD)

Clustering (e.g.,
MCL, Spectral

Clustering)

Logistic
Regression,

Support Vector
Machines

Dimensionality
Reduction

(NMF, CX, PCA)

Higher-level machine learning tasks

Deep Learning
(Neural Nets)

Dense
Matrix-
Vector
(BLAS2)

Dense
Matrix-
Matrix
(BLAS3)

16

Neural Network Training as Matrix Operations

P0,	P1,	P2 P0 P1 P2*P0 P1 P2 di

di-1 B/P

Local
matmul

B/P

W XY

P0

P1

P2

P0 P1 P2 *

XT
�Y

Local
matmul

Low rank
intermediate
matrices
(one per
process)

AllReduce
on P sized

groups

�W

P0,	P1,	P2
P0
P1
P2

P0 P1 P2P00 P01 P02 *di-1

B/P

Local
matmul

WT �Y�X

di

∇Y= ∂L/ ∂Y = how did the loss function change as
output activations changed?
∇X= ∂L/ ∂X, ∇W= ∂L/ ∂W

• Batch parallel training of neural networks is one-dimensional column-wise parallel
matrix multiplication with full replication of the weights matrix (W)

Top: Forward propagation, Bottom: Backpropagation

• Batch parallelism is preferred when W is small (e.g. CNNs)
• Hard limit to parallelism P<B where B is the batch size
• In practice, P< k*B where k~32 at least for performance

17

P0

P1

P0
P1

P0
P1 *

di/P

di-1 B

P0

P1
Local

matmul
AllGather
on P sized

groups

di/P

B

W XYintermediateY

P0, P1P0
P1

*

XT
�Y

Local
matmul

P0

P1

di/P

�W

P0 P1
P0
P1

P0
P1 *

di-1

B

Local
matmul

WT�X
intermediate �Y�X

di/P

Low rank
intermediate
matrices
(one per
process)AllReduce

on P sized
groups

• Model parallel training of neural networks is one-dimensional row-wise parallel matrix
multiplication with full replication of the data/activation matrices

• Top: Forward propagation
• Bottom: Backpropagation
• Better than batch parallel when W is large.
• Bad fit for high-latency networks (especially in

its pure form), hence rarely used in industry

Neural Network Training as Matrix Operations

Combinations of DNN parallelism opportunities

• There are various different ways to combine DNN training parallelism opportunities.
� It helps to think in terms of matrices again.

• We will exploit communication-avoiding matrix algorithms, which trade off some storage
(judicious replication) at the expense of reduced communication.
� Deep Learning community is already OK with data or model replication in many cases

B B B

1D 2D 3D

2.5D1.5D

A succinct classification of parallel matrix multiplication algorithms

C C C

Integrated Model, Batch & Domain Parallelism in Training DNNs

P00,	P01,	P02

P10,	P11,	P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di/Pr

di-1 B/Pc

P00 P01 P02

P10 P11
Local

matmul
AllGather

on Pr
sized

groups

di/Pr

B/Pc

W XYintermediateY

P12

P00, P10

P01, P11

P02, P12

P00
P10

P01
P11

P02
P12

*

XT
�Y

Local
matmul

P00,	P01,	P02

P10,	P11,	P12

di/Pr Low rank
intermediate
matrices
(one per
process)

AllReduce
on Pc
sized

groups

�W

P00
P01
P02

P10
P11
P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di-1

B/Pc

Local
matmul

WT�X
intermediate �Y�X

di/Pr

Low rank
intermediate
matrices
(one per
process)AllReduce

on Pr
sized

groups

• Combining data (batch + domain) and model parallelism optimally is done using
communication avoiding 1.5D algorithms due to skew in matrix sizes

Leads to optimal
performance in many
networks. Shown
right is AlexNet

Gholami, Azad, Jin, Keutzer, Buluç. Integrated model, batch, and domain parallelism in training neural networks (SPAA,2018)

Conclusions

- 20 -

• Both graph algorithms and machine learning have growing importance in scientific applications
• Not everything is [sparse] linear algebra, but a lot of things are. Transfer of techniques and

knowledge is easier when your scientific base is not domain specific
• Communication-avoiding [sparse] linear algebra algorithms provide unprecedented scaling for

problems outside traditional scientific computing, such as computational biology, graph
analysis, and machine learning. GraphBLAS provides a foundation for this.

• Check out http://graphblas.org, HipMCL, and Combinatorial BLAS

http://graphblas.org/

Acknowledgments

- 21 -

• Collaborators on presented work: Ariful Azad, Saliya Ekanayake, Amir Gholami,
John Gilbert, Giulia Guidi, Peter Jin, Jeremy Kepner, Kurt Keutzer, Nikos Kyrpides,
Tim Mattson, Scott McMillan, Jose Moreira, Christos Ouzounis, Dan Rokhsar, Oguz
Selvitopi, Carl Yang, Kathy Yelick

• My lab website is http://passion.lbl.gov where you can find a longer version of this talk
and its associated video

• We always hire good people (PhD students, postdocs, research scientists)

My work is funded by

http://passion.lbl.gov/

