Communication-Avoiding Sparse Matrix
. rge Graph and Machme

3y Ayd,!Q-aB‘UlucA : —r-e-'—":f 4
| Compuwtatmr;ai Research Division, LBNL‘Q
- EECS DepaftrhanFUC—Berkeley

e

EEEEEEEEEEE

Large Graphs in Traditional Scientific Computing

1 2 3 4 5 1 2 3 4 5
1| @) 1 1 11 e @
2 e 0 O 2 2 5 O ®
3)) 3 3 3 O)
1@ @ 1| @ @
5] @ ° 4 4 2 oo o

5 5
A PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

What are sparse matrices?

\ “I observed that most of the coefficients in our

\3 matrices were zero; 1.e., the nonzeros were ‘sparse’ in
the matrix, and that typically the triangular matrices
assocliated with the forward and back solution
provided by Gaussian elimination would remain
sparse 1f pivot elements were chosen with care”

e

s

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Graphs in the language of sparse matrices

o o O
®
T T ’ 6
A F A" F
| o This multi-source breadth-first

« Sparse array representation => space efficient traversal leads to a highly-parallel
» Sparse matrix-matrix multiplication => work efficient implementation for betweenness
* Three possible levels of parallelism: centrality (measure of influence in

— searches, vertices, edges graphs, based on shortest paths)

Graph coarsening via sparse matrix products

o O A ODN -

The case for sparse matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

More on http://graphblas.org

Traditional graph Graphs in the language of
computations linear algebra

Data driven, Fixed communication patterns

unpredictable communication.
Irregular and unstructured, Operations on matrix blocks “Our mission is to build up a linear
poor locality of reference exploit memory hierarchy algebra sense to the extent that vector-
level thinking becomes as natural as
Fine grained data accesses, Coarse grained parallelism, scalar-level thinking.”

dominated by latency bandwidth limited

- Charles Van Loan

http://graphblas.org/

GraphBLAS Status: C APl 1.2 released and in use

* Implementations of the GraphBLAS C specification:
— SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.htmi

— IBM https://github.com/IBM/ibmgraphblas
— Test suite for validating an implementation of the C-spec from SEI/CMU (... to be released “soon”)

« Systems using the GraphBLAS
— RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis Module, using GraphBLAS sparse
matrices for internal data representation and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/
— Lincoln Labs GraphProcessor designed around the GraphBLAS.

« C++ bindings to the GraphBLAS
— GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
— GraphBLAST (GPUs): https://github.com/gunrock/graphblast

A. Bulug, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.2.0

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://redislabs.com/blog/release-redisgraph-v1-0-preview/
https://github.com/cmu-sei/gbtl
https://github.com/gunrock/graphblast

Protein Clustering with Markov Clustering (MCL)

MCL is a widely popular and successful algorithm for discovering clusters in protein
interaction and protein similarity networks. It is robust against perturbations

.At each iteration:
1 Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
' Naive implementation: sparse matrix-matrix product (SpGEMM),
'foIIowed by column-wise top-K selection and column-wise pruning
| Step 2 (Inflation) : taking powers entry-wise

Find connected components
of the final graph (matrix)
 Return them as clusters

HipMCL: Combined Expand, Inflate, Prune Cycle

* HipMCL is a high-performance distributed memory parallel implementation of MCL
 HipMCL relies on state of the art parallel sparse matrix operations of Combinatorial BLAS

b b
))
s o e o

oe o |[X]| o0 o |T
A Ea

e oo 9 CIK

A — A2 C = Prune(A?)

Ay

b: number of columns constructed at once, dynamically selected based on memory
— Smaller b: less parallelism, memory efficient (b=1 ~ SpMSpV used in MCL)
— Larger b: more parallelism, memory intensive (also more communication-efficient)

Azad, Pavlopoulos, Ouzounis, Kyrpides, Buluc. HipMCL: A high-performance parallel implementation of the Markov

clustering algorithm for large-scale networks (Nucleic Acids Research, 2018).

Parallel Sparse Matrix Products in HipMCL

 MCL process is both computationally expensive and memory hungry, limiting the sizes of
networks that can be clustered

 HipMCL overcomes such limitation via sparse parallel algorithms.

 Up to 1000X times faster than original MCL with same accuracy.

Process row \/; X \/; P
|

rocess Grid
|

Process column

 HipMCL 1.0 uses a 2D algorithm for computing sparse matrix products (Sp GEMM)
* |t uses a memory scalable multithreaded heap-based implementation for in-node SpGEMM

HipMCL Impact and Future Work

Proteins Edges #Clusters HipMCL time platform
Isolate-1 47M 7B 1.6M 1 hr 1024 nodes Edison
Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes Edison
Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes Cori KNL
MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes Cori KNL
Impact:

* MCL can not cluster these networks

* Several novel protein families from metagenomic data are also discovered using HipMCL
Future/ongoing work:

* Generating protein similarity networks directly in distributed memory

 GPU support and integration of 3D SpGEMM to HipMCL.

LACC: Linear Algebraic Connected Components

Parallel connected components for cluster identification (after MCL iterations converge):
Awerbuch-Shiloach algorithm using SpMSpV and a few other GraphBLAS operations
V=3M E=360M CC=160K

16384 -
=0~ Metaclust50 (LACC)

-&-iso_m100 (LACC)
4096 Metaclust50 (ParConnect)
=¥#=iso_m100 (ParConnect)

1024

« Exploiting sparsity
was the key to 256
performance and o

o 256 | - scaling
E 64 | | * |Implemented using = 16
Combinatorial BLAS 4 Eukarya 2.3x
16 |)
qﬁ .|
* 4 16 64 256

4096 16384 65536 262144
Number of Cores

--ACC -%Parconnect

—~ 1024 |

Time (s)

Number of KNL nodes (68 cores per node)

Impact: More than 2x faster connected component identification across different scales.
Orders of magnitude faster at large concurrencies, enabling continued scaling of HipMCL by
removing this potential Amdahl’s bottleneck.

Azad, Bulug. LACC: a linear-algebraic algorithm for finding connected components in distributed memory (/IPDPS 2019)

BELLA: Berkeley Long-read to Long-read Aligner

* Long reads from PacBio and Oxford Nanopore have the potential to revolutionize de-novo assembly
* Overlap-Consensus-Layout paradigm is more suitable than de Bruijn graph paradigm.
« Overlapping is the most computationally expensive step.

Number of states: k + 1

Legend:

@ State: correct bases on read; and read;
@ _’ @ _’ @ _> ’) ’ _’ @ _>

Read overlapping

g using shared k-mers is
g_pz) computing a sparse

matrix product, for
which we know good
algorithms and
implementations

BELLA addresses:

- How to choose the right set of k-mers, otherwise there are too many of them?
- How to use alignment score to tell true alignments from false positives?

>

- AY
ceeooee]|"

Guidi, Ellis, Rokhsar, Yelick, Buluc. BELLA: Berkeley efficient long-read to long-read aligner and overlapper. (bioRxiv, 2018)

ny)

2

R3

R5

: ° !
— ®
° °: Ki| ® ! °
) K2
° ° K3 ° ' @
o Ké| @ : °:
...
° . K5) ;
Ki K2 K3 K4 K5 R1 R2 R3 R4 R5

AT

R1

R2

R3

R4

R5

R1 R2

.................

.................

.................

.................

.................

BERKELEY LAB

New Shared-Memory SoGEMM Kernels

212 « Compression ratio (CR): flops/nnz(C)
2] « Combinatorial BLAS and HipMCL uses heap
02 - Stable performance but significant gap in high CR
Q2" « HipMCL inputs have high CR
= * New hash implementation gives significant boost
2" _ — MKL —— Heap —— Hash HashVec
i Dataset | Target Heap Hash Hybrid
Viruses | SpGEMM 20.38 5.14 5.13
2" { Unsorted Total 62.59 47.87 4777
Archaea | SpGEMM | 7700.50 717.07 716.42
2 Total 11535.00 4550.22 4539.07
i Eukarya | SpGEMM | 18448.10 1941.93 1964.34
R Total 26717.00 10241.60 10284.80
‘ : ¢ — MKL —— Hash
2 . T Koan T Impact of integrating hash implementation to HipMCL
(single node KNL results)

Io I1 I2 I3 I4 I5

2 2 2 2 2 2

Role of Matrix Operations in Machine Learning

Higher-level machine learning tasks

og|st.|c Dimensionality Clustering (e.g., Partial Correlation :
Regression, . .) Deep Learning
Subbort Vector Reduction MCL, Spectral Estimation (Neural Nets)
'T\;’achmes (NMF, CX, PCA) Clustering) (CONCORD)

Sparse Matrix-
Multiple Dense
Vectors
(SpMM)

Sparse Matrix- Sparse Matrix-
Sparse Vector Dense Vector
(SpMSpV) (SpMV)

Sparse x Sparse x
Sparse Matrix Dense Matrix
(S GEMM) (SpDM3)

Graph/Sparse/Dense BLAS functions (in increasing arithmetic intensity)

Neural Network Training as Matrix Operations

 Batch parallel training of neural networks is one-dimensional column-wise parallel
matrix multiplication with full replication of the weights matrix (W)

BIP di- . BP,
« Batch parallelism is preferred when W is small (e.g. CNNSs)
| . « Hard limit to parallelism P<B where B is the batch size
§ 'Loca. | * |n practice, P< k*B where k~32 at least for performance
matmul
Y " W X Vy=dL/ dY = how did the loss function change as
_ _ output activations changed?
Top: Forward propagation, Bottom: Backpropagation V= L/ 9X, Vy,= oL/ oW
d; B/P
Low rank
intermediate +— * . . d * Py
ARedeq || Matees | | Local | P P "
on P sized process) matmul
groups

Neural Network Training as Matrix Operations

Model parallel training of neural networks is one-dimensional row-wise parallel matrix
multiplication with full replication of the data/activation matrices

d/Pl

[B ® [4 dl-1 - [B . J
 Top: Forward propagation
i/ PO i .
: o o . « Bottom: Backpropagation
° < < *) :
P AlGather Local P « Better than batch parallel when W is large.
on P size P, matm P,
groups amd « Bad fit for high-latency networks (especially in
Y yintermediate W X its pure form), hence rarely used in industry
d/P B
Low rank diq
intermediate
+— Po * Py Py Eo — matrices — P, * go
Local P1 , 1 AllIReduce E)Orgiezesr) Local '
matmul on P sized matmul
P, groups
XT

VW VY VX VX intermediate WT VY

Combinations of DNN parallelism opportunities

There are various different ways to combine DNN training parallelism opportunities.

- It helps to think in terms of matrices again.
 We will exploit communication-avoiding matrix algorithms, which trade off some storage
(judicious replication) at the expense of reduced communication.

- Deep Learning community is already OK with data or model replication in many cases

A succinct classification of parallel matrix multiplication algorithms

1.5D 2.5D

— < >

1D 2D 3D

Integrated Model, Batch & Domain Parallelism in Training DNNs

e Combining data (batch + domain) and model parallelism optimally is done using
communication avoiding 1.5D algorithms due to skew in matrix sizes

20 B =2048, P=512
.LPC. . G . o B/PC. EEE Computation
60 Model Comm.
L im I mEE Batch Comm.
e | 0 e, P eads to optima o
Po . P performance in many s, .
Pu :IIG th < i 2 :
ather Local = 30
e O O O s T RS networks. Shown
sized . . 20
groups X r|g ht IS AleXNet
Y Yintermediate W 10
e
Py X Pe
di/P, ‘ B/P.
Low rank diq di/P: Low rank
intermediate p P intermediate <4+ P %
Pog «— matrices < » ot — - o1 Po1, P11
Pu (one per Ell : Pu AllReduce Egi:'cii Local Pu
AlIReduce process) Local 12 o b p on Pc p matmul
on Pr matmul 100 P11, P12 sized process)
sized groups XT
groups
VX VX intermediate WT VY vW vY

Gholami, Azad, Jin, Keutzer, Buluc. Integrated model, batch, and domain parallelism in training neural networks (SPAA,2018)

Conclusions

« Both graph algorithms and machine learning have growing importance in scientific applications

* Not everything is [sparse] linear algebra, but a lot of things are. Transfer of techniques and
knowledge is easier when your scientific base is not domain specific

« Communication-avoiding [sparse] linear algebra algorithms provide unprecedented scaling for
problems outside traditional scientific computing, such as computational biology, graph
analysis, and machine learning. GraphBLAS provides a foundation for this.

« Check out http://graphblas.org, HipMCL, and Combinatorial BLAS

http://graphblas.org/

Acknowledgments

« Collaborators on presented work: Ariful Azad, Saliya Ekanayake, Amir Gholami,
John Gilbert, Giulia Guidi, Peter Jin, Jeremy Kepner, Kurt Keutzer, Nikos Kyrpides,
Tim Mattson, Scott McMillan, Jose Moreira, Christos Ouzounis, Dan Rokhsar, Oguz

Selvitopi, Carl Yang, Kathy Yelick

« My lab website is http://passion.lbl.gov where you can find a longer version of this talk
and its associated video

« We always hire good people (PhD students, postdocs, research scientists)

R, U.S. DEPARTMENT OF Office of

&) ENERGY scionce

My work is funded by

http://passion.lbl.gov/

